Wahrscheinlichkeitstheorie 1 FSS 2022

Universität Mannheim Prof. Leif Döring, Felix Benning

Sheet 1

For the exercise class on the 21.02.2022.

Hand in your solutions at 10:15 in the lecture on Monday 21.02.2022.

Exercise 1 (Properties of Conditional Expectation). Let X and Y be two integrable random variables, $\mathcal{G} \subseteq \mathcal{F} \sigma$ -Algebras.

- (i) Prove $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]] = \mathbb{E}[X]$ and $\mathbb{E}[1|\mathcal{F}] = 1$ a.s.
- (ii) Prove $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]|\mathcal{G}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{F}] = \mathbb{E}[X|\mathcal{G}]$ a.s.
- (iii) Assume that X = Y almost surely. Prove that, almost surely, $\mathbb{E}[X|Y] = Y$ and $\mathbb{E}[Y|X] = X$.

Exercise 2. The following questions are independent.

- (i) Let X and Y be i.i.d. Bernoulli variables: $\mathbb{P}(X = 1) = 1 \mathbb{P}(X = 0) = p$ for some $p \in [0, 1]$. We set $Z := \mathbf{1}_{\{X+Y=0\}}$. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[Y|Z]$. Are these random variables independent?
- (ii) Let X be a square-integrable random variable and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. We define the *conditional variance*

$$\operatorname{Var}(X|\mathcal{G}) := \mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}].$$

Prove the following identity:

$$\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X|\mathcal{G})] + \operatorname{Var}(\mathbb{E}[X|\mathcal{G}]).$$

Exercise 3 (Factorization lemma). (Important!) Let $X, Y : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be random variables. Show that, if X is $(\sigma(Y), \mathcal{B}(\mathbb{R}))$ -measurable, then there exists a measurable function $g : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that X = g(Y).

Exercise 4 (Best Estimators). Let *X* be a real random variable.

(i) Find the estimator m minimizing E[1_{X≠m}] when X is discrete. What is the best estimator for a dice roll using this loss?

We define the median of X to be $\mathbb{M}[X] := \inf\{m \in \mathbb{R} : f(m) > 0\}$, where

$$f: \begin{cases} \mathbb{R} \to [-1,1] \\ m \mapsto \mathbb{P}(X \le m) - \mathbb{P}(X > m) \end{cases}$$

(ii) (Unimportant) Prove that $\mathbb{P}(X \leq \mathbb{M}[X]) \geq \frac{1}{2}$ and $\mathbb{P}(X \geq \mathbb{M}[X]) \geq \frac{1}{2}$, and show that for all $m > \mathbb{M}[X]$ we do not have $\mathbb{P}(X \leq m) \geq \frac{1}{2}$.

Hint. Calculate the limits $\lim_{m \uparrow \mathbb{M}[X]} f(m)$ and $\lim_{m \downarrow \mathbb{M}[X]} f(m)$ using the continuity of measures. Also note that $f(m) = 2F_X(m) - 1$, where F_X is the cumulative distribution function of X.

Remark. This property is usually the defining property of the median. If this property does not define the median uniquely, $\mathbb{M}[X]$ is the largest median. A lower bound can be found similarly.

(iii) Prove that the median minimizes the L^1 error, i.e. $\mathbb{M}[X] = \arg \min_m \mathbb{E}[|X - m|]$. Whenever useful, you can assume continuity.

Hint. Recall that for $X \ge 0$ a.s., we have $\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge t) dt = \int_0^\infty \mathbb{P}(X > t) dt$. Use this fact to prove

$$\mathbb{E}[(X-m)_+] = \int_m^\infty \mathbb{P}(X > m) dt.$$