Wahrscheinlichkeitstheorie 2 FSS 2020

Universität Mannheim Dr. Q. Shi

Sheet 8

Hand in your solutions before 17:00 Thursday 02/April/2020.

Exercise 1. Show that the following families are uniformly integrable:

- (i) a finite family $\{X_1, X_2, \dots, X_n\}$ with each $\mathbb{E}[|X_i|] < \infty$.
- (ii) a sequence of identically distributed random variables $\{X_i, i \in \mathbb{N}\}$ with $\mathbb{E}[|X_1|] < \infty$.
- (iii) Let $(X_i, i \in \mathbb{N})$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_1|] < \infty$. Let $S_n = \sum_{i=1}^n X_i$ for every $n \in \mathbb{N}$. Then the family $\{\frac{1}{n}S_n, n \in \mathbb{N}\}$ is uniformly integrable. **Hint:** you may use (ii).

Exercise 2. Let $(Z_{i,1} \ge 1)$ be i.i.d. centred random variables with $\mathbb{E}[|Z_i|] < \infty$. Let θ be a random variable with $\mathbb{E}[|\theta|] < \infty$. They are all defined in the same probability space. Let $Y_i := Z_i + \theta$ for $i \ge 1$. In statistical terms, we may understand (Y_i) as a sample (observations/data) of θ with error (Z_i) (typically, Z_i can be iid standard normal distribution). The distribution of θ is called the *prior distribution* and the conditional distribution of θ given (Y_1, \ldots, Y_n) is called the *posterior distribution* after n observations. Let $\mathcal{F}_{\infty} = \sigma(Y_1, Y_2, Y_3, \ldots)$. Show that $\lim_{n\to\infty} \mathbb{E}[\theta \mid Y_1, \ldots, Y_n] = \theta$ a.s.. **Hint:** using SLLN to prove $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} Y_i$ is \mathcal{F}_{∞} -measurable.

Exercise 3 (Product measurable space). Let $(\Omega_{\alpha}, \mathcal{F}_{\alpha})_{\alpha \in I}$ be a family of measurable spaces. For any collection $A \subset I$, we define a space Ω_A by the Cartesian product

$$\Omega_A := \prod_{\alpha \in A} \Omega_\alpha;$$

i.e. each element in Ω_A is a tuple $(x_\alpha)_{\alpha \in A}$ with $x_\alpha \in \Omega_\alpha$. For any $B \subset A$, we define the projection map $\pi_{A \to B} \colon \Omega_A \to \Omega_B$ by

$$\pi_{A \to B}((x_{\alpha})_{\alpha \in A}) = (x_{\alpha})_{\alpha \in B}.$$

For simplicity, we denote $\pi_A := \pi_{I \to A}$ and $\pi_\alpha := \pi_{\{\alpha\}}$. Moreover, we define a *product* σ -algebra \mathcal{F}_A on Ω_A by

$$\mathcal{F}_A := \prod_{\alpha \in A} \mathcal{F}_\alpha := \sigma \left(\pi_{A \to \{\alpha\}}^{-1}(B) \colon B \in \mathcal{F}_\alpha, \alpha \in A \right).$$

Recall that \mathcal{F}_A is the smallest σ -algebra on Ω_A such that $(\pi_{A \to \{\alpha\}}, \alpha \in A)$ are all measurable, i.e. $\mathcal{F}_A = \sigma(\pi_{A \to \{\alpha\}}, \alpha \in A)$.

- (i) For any $B \subset A \subset I$, show that $\pi_{A \to B}$ is $(\mathcal{F}_A, \mathcal{F}_B)$ -measurable.
- (ii) For any $E_I \in \mathcal{F}_I$ show that there exists an at most countable set $B \subset I$ and $E_B \in \mathcal{F}_B$, such that $E_I = \pi_B^{-1}(E_B)$. **Hint**: consider the family of sets in \mathcal{F}_I that satisfy this property and show that this family is a σ -algebra.
- (iii) If *I* is at most countable, show that there is the identity

$$\mathcal{F}_I = \sigma \left(\prod_{\alpha \in I} B_\alpha, B_\alpha \in \mathcal{F}_\alpha\right).$$

Is this still true when *I* is uncountable?