Dr. Q. Shi

Sheet 8

Hand in your solutions before 17:00 Thursday 02/April/2020.
Exercise 1. Show that the following families are uniformly integrable:
(i) a finite family $\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ with each $\mathbb{E}\left[\left|X_{i}\right|\right]<\infty$.
(ii) a sequence of identically distributed random variables $\left\{X_{i}, i \in \mathbb{N}\right\}$ with $\mathbb{E}\left[\left|X_{1}\right|\right]<\infty$.
(iii) Let $\left(X_{i}, i \in \mathbb{N}\right)$ be a sequence of i.i.d. random variables with $\mathbb{E}\left[\left|X_{1}\right|\right]<\infty$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ for every $n \in \mathbb{N}$. Then the family $\left\{\frac{1}{n} S_{n}, n \in \mathbb{N}\right\}$ is uniformly integrable. Hint: you may use (ii).

Exercise 2. Let $\left(Z_{i}, 1 \geq 1\right)$ be i.i.d. centred random variables with $\mathbb{E}\left[\left|Z_{i}\right|\right]<\infty$. Let θ be a random variable with $\mathbb{E}[|\theta|]<\infty$. They are all defined in the same probability space. Let $Y_{i}:=Z_{i}+\theta$ for $i \geq 1$. In statistical terms, we may understand (Y_{i}) as a sample (observations/data) of θ with error $\left(Z_{i}\right)$ (typically, Z_{i} can be iid standard normal distribution). The distribution of θ is called the prior distribution and the conditional distribution of θ given $\left(Y_{1}, \ldots Y_{n}\right)$ is called the posterior distribution after n observations. Let $\mathcal{F}_{\infty}=\sigma\left(Y_{1}, Y_{2}, Y_{3}, \ldots\right)$. Show that $\lim _{n \rightarrow \infty} \mathbb{E}\left[\theta \mid Y_{1}, \ldots Y_{n}\right]=\theta$ a.s..
Hint: using SLLN to prove $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Y_{i}$ is \mathcal{F}_{∞}-measurable. .
Exercise 3 (Product measurable space). Let $\left(\Omega_{\alpha}, \mathcal{F}_{\alpha}\right)_{\alpha \in I}$ be a family of measurable spaces. For any collection $A \subset I$, we define a space Ω_{A} by the Cartesian product

$$
\Omega_{A}:=\prod_{\alpha \in A} \Omega_{\alpha}
$$

i.e. each element in Ω_{A} is a tuple $\left(x_{\alpha}\right)_{\alpha \in A}$ with $x_{\alpha} \in \Omega_{\alpha}$. For any $B \subset A$, we define the projection $\operatorname{map} \pi_{A \rightarrow B}: \Omega_{A} \rightarrow \Omega_{B}$ by

$$
\pi_{A \rightarrow B}\left(\left(x_{\alpha}\right)_{\alpha \in A}\right)=\left(x_{\alpha}\right)_{\alpha \in B} .
$$

For simplicity, we denote $\pi_{A}:=\pi_{I \rightarrow A}$ and $\pi_{\alpha}:=\pi_{\{\alpha\}}$. Moreover, we define a product σ-algebra \mathcal{F}_{A} on Ω_{A} by

$$
\mathcal{F}_{A}:=\prod_{\alpha \in A} \mathcal{F}_{\alpha}:=\sigma\left(\pi_{A \rightarrow\{\alpha\}}^{-1}(B): B \in \mathcal{F}_{\alpha}, \alpha \in A\right) .
$$

Recall that \mathcal{F}_{A} is the smallest σ-algebra on Ω_{A} such that $\left(\pi_{A \rightarrow\{\alpha\}}, \alpha \in A\right)$ are all measurable, i.e. $\mathcal{F}_{A}=\sigma\left(\pi_{A \rightarrow\{\alpha\}}, \alpha \in A\right)$.
(i) For any $B \subset A \subset I$, show that $\pi_{A \rightarrow B}$ is $\left(\mathcal{F}_{A}, \mathcal{F}_{B}\right)$-measurable.
(ii) For any $E_{I} \in \mathcal{F}_{I}$ show that there exists an at most countable set $B \subset I$ and $E_{B} \in \mathcal{F}_{B}$, such that $E_{I}=\pi_{B}^{-1}\left(E_{B}\right)$. Hint: consider the family of sets in \mathcal{F}_{I} that satisfy this property and show that this family is a σ-algebra.
(iii) If I is at most countable, show that there is the identity

$$
\mathcal{F}_{I}=\sigma\left(\prod_{\alpha \in I} B_{\alpha}, B_{\alpha} \in \mathcal{F}_{\alpha}\right)
$$

Is this still true when I is uncountable?

