Wahrscheinlichkeitheorie 2 FSS 2020

Universität Mannheim Prof. M. Slowik, Dr. Q. Shi

Sheet 7

We work on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_n)_{n \in \mathbb{N}_0}, \mathbb{P})$ for all the exercises. All the random variables are assumed to be real-valued.

Exercise 1 (Kolmogorov 0-1 law). Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent random variables. Define a filtration by $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, for every $n \in \mathbb{N}$. We also denote $\mathcal{F}^n := \sigma(X_{n+1}, X_{n+2}, \ldots)$ (but (\mathcal{F}^n) is not a filtration). Let $\mathcal{F}^{\infty} := \bigcap_{n \in \mathbb{N}} \mathcal{F}^n$. Let $A \in \mathcal{F}^{\infty}$. By using the martingale $\mathbb{E}[\mathbf{1}_A | \mathcal{F}_n]$, prove that, $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Exercise 2. Let $(X_n)_{n\geq 1}$ be a sequence of independent, non-negative random variables of mean 1. Consider $(\mathcal{F}_n)_{n\geq 0}$ its natural filtration. Let $M_0 := 1$ and for every $n \geq 1$,

$$M_n \coloneqq \prod_{k=1}^n X_k$$

- (i) Prove that $M \coloneqq (M_n)_{n \ge 0}$ is a martingale which converges almost surely.
- (ii) Denote by $M_{\infty} := \lim_{n \to \infty} M_n$. Prove that the following are equivalent:
 - (a) $\mathbb{E}[M_{\infty}] = 1.$
 - (b) $\lim_{n\to\infty} M_n = M_\infty$ in L^1 .
 - (c) $(M_n)_{n>0}$ is uniformly integrable.
 - (d) $\prod_{k=1}^{\infty} a_n > 0$ where $0 < a_n \coloneqq \mathbb{E}[\sqrt{X_n}] \le 1$.

Moreover, if one (and then every one) of the above statements fails to hold, then $M_{\infty} = 0$ almost surely.

Hint: you can prove (d) \implies (c) by considering the process defined for every $n \ge 1$ by

$$N_n \coloneqq \prod_{k=1}^n \frac{\sqrt{X_k}}{a_k},$$

which is a martingale bounded in L^2 (to prove). Then use it to prove that M is dominated by an integrable random variable.

Remark: By a result in analysis, we also know that (d) is equivalent to

(e) $\sum_{k=1}^{\infty} (1-a_n) < \infty$.

Exercise 3. Extension of the Borel-Cantelli Lemmas Let $(E_n)_{n\geq 1}$ be a sequence of events, with $E_n \in \mathcal{F}_n$ for every $n \geq 1$. Define $X_0 = Y_0 = M_0 = 0$ and for every $n \geq 1$

$$X_n \coloneqq \sum_{k=1}^n \mathbf{1}_{E_k}, \quad Y_n \coloneqq \sum_{k=1}^n \mathbb{P}(E_k | \mathcal{F}_{k-1}) \quad \text{and} \quad M_n \coloneqq X_n - Y_n.$$

Let $X_{\infty} \coloneqq \lim_{n \to \infty} X_n$ and $Y_{\infty} \coloneqq \lim_{n \to \infty} Y_n$. We aim to show that

$$\{Y_{\infty} < \infty\} = \{X_{\infty} < \infty\}$$
 almost surely.

- (i) Explain why this strengthens the two Borel-Cantelli lemmas.
- (ii) Prove that $(X_n)_{n>0}$ is a submartingale and $(M_n)_{n>0}$ is a martingale.
- (iii) Show that for every a > 0, $\tau_a := \inf\{n \ge 0 : Y_{n+1} > a\}$ is a stopping time.
- (iv) Show that for every a > 0, $n \ge 0$, $M_{n \wedge \tau_a}^- \le a$. Deduce that $(M_{n \wedge \tau_a})_{n \ge 0}$ converges almost surely.
- (v) Show that $\{Y_{\infty} < \infty\} \subset \{X_{\infty} < \infty\}$ almost surely. **Hint:** What happens on $\{\tau_a = \infty\}$?
- (vi) Show that $\{X_{\infty} < \infty\} \subset \{Y_{\infty} < \infty\}$ almost surely. Hint: Consider $\sigma_a := \inf\{n \ge 0 : X_n > a\}$ and $M_{n \wedge \sigma_a}^+$.

Exercise 4. Let $\mathcal{F}_{\infty} := \sigma(\bigcup_{k=1}^{\infty} \mathcal{F}_k)$. Assume that there exists a finite measure ν on \mathcal{F}_{∞} , such that, for all $n \ge 0$, there exists a non-negative, \mathcal{F}_n -measurable and \mathbb{P} -integrable function M_n with

$$\nu(A) = \mathbb{E}[M_n \mathbf{1}_A], \text{ for every } A \in \mathcal{F}_n.$$

In particular, we have that $\nu \ll \mathbb{P}$ (ν is absolutely continuous with respect to \mathbb{P}) on \mathcal{F}_n for all $n \ge 0$.

- (i) Prove that $(M_n)_{n\geq 0}$ is a martingale which converges almost surely. Denote by M_{∞} the limit.
- (ii) Prove that $\nu \ll \mathbb{P}$ on \mathcal{F}_{∞} if and only if $(M_n)_{n \ge 0}$ is closed, and that in that case,

$$\nu(A) = \mathbb{E}[M_{\infty}\mathbf{1}_A], \text{ for every } A \in \mathcal{F}_{\infty}.$$

(iii) Assume that ν and \mathbb{P} are orthogonal on \mathcal{F}_{∞} , i.e. there exists $S \in \mathcal{F}_{\infty}$ such that $\mathbb{P}(S) = 1$ and $\nu(S) = 0$. Prove that $M_{\infty} = 0$ almost surely.