
Wahrscheinlichkeitheorie 2 Universität Mannheim
FSS 2020 Prof. M. Slowik, Dr. Q. Shi

Sheet 5

For the exercise class 16/03/2020. Hand in your solutions before 17:00 Thursday 12/03/2020.
We work on a filtered probability space (Ω,F ,F := (Fn)n≥0,P) for all the exercises. All the random
variables are assumed to be real-valued.

Exercise 1. Let (Hn)n∈N0 be a predictable process respect to the filtration F, i.e. H0 is a constant
and for every n ∈ N, Hn is Fn−1 measurable. Show that, if the F-predictable process (Hn) is also a
F-martingale, then Hn = H0 a.s. for all n ∈ N.

Solution. Hn is a martingale:
E[Hn | Fn−1] = Hn−1.

Hn is predictable:
E[Hn | Fn−1] = Hn.

So we have Hn = Hn−1 a.s. for each n ∈ N. Therefore, Hn = H0 a.s. for all n ∈ N.

Exercise 2. Let (Xn, n ≥ 1) is a sequence of i.i.d. random variables with P(Xn = 1) = 1/2 and
P(Xn = −1) = 1/2. Let Gn := σ(X1, X2, . . . Xn) with G0 := {∅,Ω}. Let Sn :=

∑n
i=1Xi for every

n ∈ N0.

(i) Prove that (S2
n − n)N0 is a (Gn)-martingale.

(ii) Prove that (S3
n − 3nSn)N0 is a (Gn)-martingale.

(iii) Find a polynomial P (s, n) with degree 4 on s and degree 2 on n, such that (P (Sn, n))n∈N0 is a
(Gn)-martingale.

(iv) Prove that, in general, for a polynomialP (x, y), the process (P (Sn, n))n∈N0 is a (Gn)-martingale,
if

P (s+ 1, n+ 1) + P (s− 1, n+ 1) = 2P (s, n).

(v) Let λ ∈ R. Find a constant c ∈ R such that exp(λSn − cn)n∈N is a (Gn)-martingale.

Solution. We first prove (iv). Since Sn is Gn-measurable and |Sn| ≤ n, we know that for each poly-
nomial P , the random variable P (Sn, n) is bounded and Gn-measurable. Moreover, we have

E[P (Sn+1, n+ 1) | Gn] = E[P (Sn +Xn+1, n+ 1)(1{Xn+1=1} + 1{Xn+1=−1}) | Gn]

= E[P (Sn + 1, n+ 1)1{Xn+1=1} | Gn] + E[P (Sn − 1, n+ 1)1{Xn+1=−1} | Gn]

= P (Sn + 1, n+ 1)P(Xn+1 = 1) + P (Sn − 1, n+ 1)P(Xn+1 = −1)

=
1

2
(P (Sn + 1, n+ 1) + P (Sn − 1, n+ 1)) ,

where we have used the fact that P (Sn + 1, n+ 1) is Gn-measurable for the third equality. If

P (s+ 1, n+ 1) + P (s− 1, n+ 1) = 2P (s, n),

1



then we deduce that
E[P (Sn+1, n+ 1) | Gn] = P (Sn, n).

So (P (Sn, n), n ∈ N) is a Gn-martingale.
Using (iv), one can deduce (i) (ii) and (iii) by straightforward calculation.
(v): Since |Sn| ≤ n, exp(λSn − cn) is bounded and thus integrable.

E[exp(λSn − cn) | Fn−1] = E[exp(λSn−1 − cn) exp(λXn) | Fn−1]

= exp(λSn−1 − cn)E[exp(λXn)]

= exp(λSn−1 − c(n− 1))e−c cosh(λ).

So this is a martingale if c = log(cosh(λ)).

Exercise 3. De Mere’s martingale
Consider a fair game of heads and tails: you may bet for k euros, then with probability 1/2 you win
and is rewarded 2k euros and otherwise you lose the k euros). A player adopts the following strategy.
He bets 1 euro at the first hand. If this first bet is lost he then bets 2 euros at the second hand. If he
loses his n first bets, he bets 2n euros at the (n + 1)-th hand. Moreover, as soon as the player wins
one bet, he stops playing (or equivalently, after he wins a bet, he bets 0 euro on every sub-sequential
hand). Denote by (Xn)n≥1 the net profit of the player just after the n-th hand has been played.

(i) Show that (Xn)n≥1 is a martingale.

(ii) Show that almost surely, the game ends in finite time. What is the expectation of the duration of
the game? What is the net profit of the player at the moment when he stops playing?

(iii) Compute the expectation of his maximal loss during the game.

(iv) What would change if the player decides to triple his bet after every hand that he has lost? What
changes if the game is unfair? Why do you think casinos have (in effect) forbidden this strategy
by limiting the maximum possible bet?

Solution.

(i) Let X ′n denote the net profit of the player just after the n-th hand has been played, if you never
stop. X ′1 ∈ {−1, 1} almost surely, and for any n ≥ 1, X ′n+1 ∈ {X ′n − 2n, X ′n + 2n} almost
surely. Thus for every n ≥ 1, X ′n is integrable. Moreover, for every n ≥ 1,

P(X ′n+1 = X ′n − 2n|X ′n) = P(X ′n+1 = X ′n + 2n|X ′n)

so E[X ′n+1 −X ′n|X ′n] = 0. That is, (X ′n)n≥1 is a martingale.

Let T be the first time that he wins. We can write

T = inf{n ≥ 1: X ′n > X ′n−1}.

This is a stopping time. Then by the optional stopping theorem, the process (Xn = X ′n∧T )n≥1
is a martingale.
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(ii) The game ends at the first win. The distribution of T is Geometric of parameter 1/2 which is
almost surely finite, and E[T ] = 2. Finally, almost surely,

XT =

∞∑
n=1

Xn1{T=n} =

∞∑
n=1

(
−

n∑
k=1

2k−1 + 2n
)
1{T=n} =

∞∑
n=1

1{T=n} = 1.

(iii) The maximal loss is given by XT−1 and, almost surely,

XT−1 =
∞∑
n=1

Xn−11{T=n} =
∞∑
n=1

−
n−1∑
k=1

2k−11{T=n} =
∞∑
n=1

(1− 2n−1)1{T=n} = 1− 2T−1.

Then,

E[XT−1] = 1− E[2T−1] = 1−
∞∑
n=1

2n−1
1

2n
= 1−

∞∑
n=1

1

2
= −∞.

The strategy is risky in the real world since the initial fortune is finite (possibility of being
bankrupt before winning).

(iv) If the player decides to triple his bet after every hand that he has lost, then XT = 1
2(3T − 1),

but XT−1 = 1− 3T−1 so, again, E[XT−1] = −∞.

If the game is unfair: denote by p ∈ [0, 1] the probability to win each bet. Then E[T ] = 1/p and
XT = 1.

E[XT−1] = 1− E[2T−1] = 1−
∞∑
n=1

2n−1(1− p)n−1p =

{
−∞ p ≤ 1/2,

1− p
1−2(1−p) p > 1/2.

Why do Casino games have maximum betting limits? You can have your own explain. Here is
someone’s arguments:
https://www.casinotestreports.com/casino-maximum-bet-limits.

Exercise 4. Gambler’s ruin
Let (Xn)n≥1 be a sequence of i.i.d. random variables with P(X1 = 1) = 1 − P(X1 = −1) = p
for some p ∈ (0, 1), p 6= 1/2. Let a, b ∈ N with 0 < a < b. Define S0 := a and for every n ≥ 1,
Sn := Sn−1 +Xn. Finally, define the following stopping time:

T := inf{n ≥ 0 : Sn = 0 or Sn = b}.

We consider the filtration generated by (Xn)n≥1.

(i) Show that E[T ] <∞. Hint: Sheet 4 provides a sufficient condition.

(ii) Consider for every n ≥ 0,

Mn :=

(
1− p
p

)Sn

and Nn := Sn − n(2p− 1).

Prove that (Mn)n≥0 and (Nn)n≥0 are martingales.
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(iii) Deduce the values of P(ST = 0) and P(ST = b).

(iv) Compute the value of E[T ].

Solution.

(i) We have for every n ≥ 0, P(T ≤ n+ b|Fn) > inf(pb, (1− p)b) > 0. We deduce from Sheet 4,
Exercise 2 that E[T ] <∞.

(ii) (Sn)n≥0 is adapted to the filtration (Fn)n≥0 generated by (Xn)n≥0 and then so are (Mn)n≥0
and (Nn)n≥0. They are integrable: clear for (Nn)n≥0 and comes from |Sn| ≤ a + n for every
n ≥ 0 for (Mn)n≥0. Then for every n ≥ 0,

E[Mn+1|Fn] = MnE
[(

1− p
p

)Xn+1
]

= Mn

[
p

1− p
p

+ (1− p) p

1− p

]
= Mn,

and
E[Nn+1 −Nn|Fn] = E[Xn+1]− (2p+ 1) = [p− (1− p)]− (2p− 1) = 0.

(iii) We apply optional stopping Theorem to obtain that (Mn∧T )n≥0 is a martingale. Since T < ∞
a.s., we have limn→∞Mn∧T = MT a.s.. We also notice that this process is bounded:

|Mn∧T | ≤ max

((
1− p
p

)b

, 1

)
, n ∈ N.

By dominated convergence,

E[MT ] = lim
n→∞

E[Mn∧T ] = E[M0].

That is,(
1− p
p

)a

= E
[(

1− p
p

)S0
]

= E
[(

1− p
p

)ST
]

= P(ST = 0) +

(
1− p
p

)b

P(ST = b).

Since P(ST = b) = 1− P(ST = 0), we get

P(ST = b) =

(
1− p
p

)a

− 1(
1− p
p

)b

− 1

, and P(ST = 0) =

(
1− p
p

)b

−
(

1− p
p

)a

(
1− p
p

)b

− 1

.

(iv) Recall that the process (Sn∧T )n≥0 is bounded by b. For every n ≥ 0, we then get

|Sn∧T − (2p− 1)n ∧ T | ≤ b+ (2p− 1)T ∈ L1.

Then from dominated convergence theorem

a = E[N0] = E[Nn∧T ] = E[Sn∧T − (2p− 1)n ∧ T ]→ E[ST − (2p− 1)T ].

Finally

E[T ] =
E[ST ]− a

2p− 1
=

b

2p− 1

(
1− p
p

)a

− 1(
1− p
p

)b

− 1

− a

2p− 1
.
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