Sheet 4

For the exercise class 09/03/2020. Hand in your solutions before 17:00 Thursday 05/03/2020.

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ for all the exercises. All the random variables are assumed to be real-valued.

Exercise 1. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n, n \in \mathbb{N}_0), \mathbb{P})$ be a filtered probability space. Let $(T_k, k \in \mathbb{N})$ be a sequence of $(\mathcal{F}_n, n \in \mathbb{N}_0)$ -stopping times. Show that $\inf_{k \in \mathbb{N}} T_k$, $\sup_{k \in \mathbb{N}} T_k$, $\lim\inf_{k \in \mathbb{N}} T_k$ and $\lim\sup_{k \in \mathbb{N}} T_k$ are all $(\mathcal{F}_n, n \in \mathbb{N}_0)$ -stopping times.

Exercise 2. Let T be a $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -stopping time. Suppose that there exists $N\in\mathbb{N}$ and $\varepsilon\in(0,1)$, such that for every $n\in\mathbb{N}$,

$$\mathbb{P}(T \le n + N | \mathcal{F}_n) > \varepsilon$$
, almost surely.

(i) Prove that for each $k \in \mathbb{N}$, we have $\mathbb{P}(T > kN) \leq (1 - \varepsilon)^k$.

Hint:
$$\mathbb{P}(T > kN) = \mathbb{P}(T > kN, T > (k-1)N).$$

(ii) Deduce that $\mathbb{E}[T] < \infty$.

Exercise 3. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. uniform random variables on (0,1). Define for every $n\in\mathbb{N}, S_n:=X_1+\ldots+X_n$. Let $T:=\inf\{n\geq 1:S_n>1\}$. Define S_T by:

$$S_T(\omega) = \begin{cases} S_n(\omega) & \text{if } T(\omega) = n \in \mathbb{N} \\ 0 & \text{if } T(\omega) = \infty. \end{cases} \text{ for every } \omega \in \Omega.$$

- (i) Show that $\mathbb{P}(S_n \leq 1) = \frac{1}{n!}$.
- (ii) Calculate $\mathbb{P}(T > n)$ and $\mathbb{E}[T]$.
- (iii) Calculate $\mathbb{E}[S_T]$.

Exercise 4. The two questions are independent.

- (i) Let $(X_n)_{n\in\mathbb{N}}$ be a $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -adapted stochastic process with $\mathbb{E}[X_n^2]<\infty$ for each $n\in\mathbb{N}$. Define for every $n\geq 1$, $S_n:=X_1+\ldots+X_n$. Suppose that $(S_n)_{n\in\mathbb{N}}$ is a $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale. Show that if $i\neq j$, then $\mathbb{E}[X_iX_i]=0$.
- (ii) Let $(X_n)_{n\in\mathbb{N}_0}$ be a $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -adapted stochastic process with $X_0=0$ and $\mathbb{E}[|X_n|]<\infty$ for each $n\in\mathbb{N}$. Suppose that there exists $a\in(0,1)$ such that $\mathbb{E}[X_{n+1}|X_1,\ldots,X_n]=aX_n+(1-a)X_{n-1}$ for every $n\geq 1$. Find a real number $b\in\mathbb{R}$ such that $S_n\coloneqq bX_n+X_{n-1},\,n\geq 1$, defines a $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale.