Wahrscheinlichkeitheorie 2 FSS 2020

Sheet 3

Hand in your solutions before 17:00 Friday 28/02/2020.

Exercise 1 (Monotone Class theorem for functions). Let $(\Omega, \sigma(\mathcal{A}))$ be a measurable space, where \mathcal{A} is a π -system (i.e. stable under intersection). Suppose \mathcal{H} is a space of real-valued (bounded real valued, respectively) functions defined on Ω , that satisfies the following properties:

- (i) \mathcal{H} is a vector space: if $f, g \in \mathcal{H}$, then $cf + g \in \mathcal{H}$ for any $c \in \mathbb{R}$;
- (ii) the constant function 1 belongs to \mathcal{H} ;
- (iii) if $(f_n, n \in \mathbb{N})$ is an increasing sequence of non-negative functions in \mathcal{H} which converges pointwise to a non-negative (bounded non-negative, respectively) function f, then $f \in \mathcal{H}$.
- (iv) every indicator function $\mathbf{1}_A$ with $A \in \mathcal{A}$ belongs to \mathcal{H} .

Prove that, \mathcal{H} contains all real valued (bounded real valued, respectively) ($\sigma(\mathcal{A}), \mathcal{B}(\mathbb{R})$)-measurable functions.

Hint: Consider $S := \{A \subset \Omega : \mathbf{1}_A \in \mathcal{H}\}$ and use $\pi - \lambda$ theorem (e.g. Theorem 1.19 in Klenke) to show that $\sigma(\mathcal{A}) \subset S$.

Exercise 2. Let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a filtration and $\mathcal{F}_{\infty} := \sigma(\mathcal{F}_n, n \in \mathbb{N}) = \sigma(\bigcup_{n\in\mathbb{N}}\mathcal{F}_n)$. Fix $p \in [1,\infty)$. Prove that, for every \mathcal{F}_{∞} -measurable bounded random variable X, there is

$$\mathbb{E}[X \mid \mathcal{F}_n] \to \mathbb{E}[X \mid \mathcal{F}_\infty] \quad \text{in } \mathcal{L}^p.$$

Is the same statement true for every \mathcal{F}_{∞} -measurable random variable X in \mathcal{L}^p ? **Hint**: note that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ is a π -system (\cap -stable). Use Exercise 1.