Wahrscheinlichkeitheorie 2

FSS 2020

Universität Mannheim
Prof. M. Slowik, Dr. Q. Shi

Sheet 2

For the exercise class 02.03 .2020 .
Hand in your solutions to B26 Floor 3, before 17:00 Thursday 20.02.2020.
Exercise 1. The three questions are independent.
(i) Let X and Y be i.i.d. Bernoulli variables: $\mathrm{P}(X=1)=1-\mathrm{P}(X=0)=p$ for some $p \in$ $[0,1]$. We set $Z:=\mathbf{1}_{\{X+Y=0\}}$. Compute $\mathrm{E}[X \mid Z]$ and $\mathrm{E}[Y \mid Z]$. Are these random variables independent?
(ii) Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra and $A \in \mathcal{F}$. We consider $B:=\left\{\mathrm{E}\left[\mathbf{1}_{A} \mid \mathcal{G}\right]=0\right\} \in \mathcal{G}$. Show that $B \subset \Omega \backslash A$ almost surely.
(iii) Let X be a square-integrable random variable and $\mathcal{G} \subset \mathcal{F}$ a sub- σ-algebra. We define the conditional variance

$$
\operatorname{Var}(X \mid \mathcal{G}):=\mathrm{E}\left[(X-\mathrm{E}[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right] .
$$

Show the following identity:

$$
\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}(\mathrm{E}[X \mid \mathcal{G}])
$$

Exercise 2. Let X and Y be two integrable random variables.
(i) Assume that $X=Y$ almost surely. Prove that, almost surely, $\mathrm{E}[X \mid Y]=Y$ and $\mathrm{E}[Y \mid X]=X$.
(ii) Conversely, suppose that X and Y are such that $\mathrm{E}[X \mid Y]=Y$ and $\mathrm{E}[Y \mid X]=X$ almost surely. Prove that $X=Y$ almost surely.
Hint: You can consider $\mathrm{E}\left[(X-Y) \mathbf{1}_{\{X>c, Y \leq c\}}\right]+\mathrm{E}\left[(X-Y) \mathbf{1}_{\{X \leq c, Y \leq c\}}\right]$.
(Recall that for any $x, y \in \mathbb{R}, x>y$ is equivalent to $\exists c \in \mathbb{Q}$ such that $x>c \geq y$.)

Exercise 3.

(i) Let X, Y, Z be three random variables such that (X, Z) and (Y, Z) are identically distributed. We denote by μ the distribution of X.
(a) Prove that for any measurable function f non-negative or such that $f(X)$ is integrable,

$$
\mathrm{E}[f(X) \mid Z]=\mathrm{E}[f(Y) \mid Z] \quad \text { almost surely. }
$$

(b) Let g be a measurable function non-negative or such that $g(Z)$ is integrable. Set

$$
h_{1}(X):=\mathrm{E}[g(Z) \mid X] \quad \text { and } \quad h_{2}(Y):=\mathrm{E}[g(Z) \mid Y] .
$$

Show that $h_{1}=h_{2} \mu$-almost surely.
(ii) Let $T_{1}, T_{2}, \ldots, T_{n}$ be i.i.d. integrable random variables and set $S_{n}=T_{1}+\ldots+T_{n}$.
(a) Prove that for any $j \in\{1, \ldots, n\}, \mathrm{E}\left[T_{j} \mid S_{n}\right]=n^{-1} S_{n}$ almost surely.
(b) Compute $\mathrm{E}\left[S_{n} \mid T_{j}\right]$ for any $j \in\{1, \ldots, n\}$.

Exercise 4. Calculate the following conditional expectations and determine the conditional distributions.
(i) $\mathrm{E}\left[(Y-X)^{+} \mid X\right]$, where X, Y are independent uniform random variables on $[0,1]$.
(ii) $\mathrm{E}[X \mid X+Y]$, where X, Y are independent Poisson random variables with parameters λ and μ respectively.
(iii) $\mathrm{E}[X \mid Y]$, where (X, Y) has a joint distribution with density:

$$
4 y(x-y) e^{-(x+y)} \mathbf{1}_{\{0<y<x\}} .
$$

(iv) X, Y, Z are i.i.d. standard Gaussian random variables. $U=2 X-Y-Z, V=3 X+Y-4 Z$, calculate $\mathrm{E}[V \mid U]$.

