Wahrscheinlichkeitheorie 2
FSS 2020

Universität Mannheim
Prof. M. Slowik, Dr. Q. Shi

Sheet 1

For the exercise class 17.02.2020.

For any set E, we denote by $\mathcal{P}(E)$ the powerset of E, i.e. the set of all subsets of E.
Exercise 1. Consider two measurable spaces (Ω, \mathcal{F}) and (E, \mathcal{E}). Suppose that $\mathcal{E}=\sigma(\mathcal{A})$ with some $\mathcal{A} \subset \mathcal{P}(E)$. Show that a mapping $f:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$ is measurable, if

$$
f^{-1}(A) \in \mathcal{F} \quad \text { for every } A \in \mathcal{A} .
$$

Exercise 2. Consider two measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) and a function $f: E \rightarrow F$.
(i) Show that $\left\{B \subset F: f^{-1} B \in \mathcal{E}\right\}$ is a sigma-algebra.
(ii) Show that $\sigma(f):=\left\{f^{-1} B \subset E: B \in \mathcal{F}\right\}$ is a sigma-algebra.
(iii) Let $\mathcal{A} \subset \mathcal{P}(F)$. Then $f^{-1}(\sigma(\mathcal{A}))=\sigma\left(f^{-1}(\mathcal{A})\right)$.

Exercise 3. Let $E \subset \Omega$. Show that $\mathcal{F}_{E}:=\{A \cap E: A \in \mathcal{F}\}$ is a sigma-algebra. If $\mathcal{F}=\sigma(\mathcal{E})$, that is \mathcal{F} is generated by for \mathcal{E}, where \mathcal{E} is a a collection of subsets of Ω. Then prove the identity $\mathcal{F}_{E}=\sigma(\{A \cap E: A \in \mathcal{E}\})$.

Exercise 4 (Factorization lemma). Let $Y:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$ be measurable. Show that, for every random variable $X:(\Omega, \sigma(Y)) \rightarrow(\overline{\mathbb{R}}:=[-\infty,+\infty], \mathcal{B}(\overline{\mathbb{R}}))$, there exists a measurable function $g:(E, \mathcal{E}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$, such that $X=g(Y)$.

Solution. Reference of this exercise: Corollary 1.97 in Klenke.
We start with the case that X is a $\sigma(Y)$ simple function: that is $X=\sum_{i=1}^{k} \lambda_{k} \mathbf{1}_{A_{k}}$, where $\lambda_{k} \geq 0$ and $A_{k} \in \sigma(Y)$. By the definition of the sigma-algebra $\sigma(Y)$, the fact that $A_{k} \in \sigma(Y)$ implies that there exists $B_{k} \in \mathcal{E}$ such that $Y^{-1}\left(B_{k}\right)=A_{k}$. Define $g:=\sum_{i=1}^{k} \lambda_{k} \mathbf{1}_{\left\{B_{k}\right\}}$, which is $(E, \mathcal{E}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ measurable. Then we have the identity, for every $\omega \in \Omega$:

$$
X(\omega)=\sum_{i=1}^{k} \lambda_{k} \mathbf{1}_{\left\{A_{k}\right\}}(\omega)=\sum_{i=1}^{k} \lambda_{k} \mathbf{1}_{\left\{Y^{-1}\left(B_{k}\right)\right\}}(\omega)=\sum_{i=1}^{k} \lambda_{k} \mathbf{1}_{\left\{B_{k}\right\}}(Y(\omega))=g(Y(\omega)) .
$$

This is the say $X=g(Y)$.
Now consider a non-negative $\sigma(Y)$-measurable function X. Then there exists a sequence of simple function $\left(X_{n}, n \in \mathbb{N}\right)$, such that $X_{n} \leq X_{n+1}$ for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} X_{n}=X$. Applying the statement in the previous step, we have, for each $n \in \mathbb{N}$, a $(E, \mathcal{E}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$-measurable function g_{n}, such that $X_{n}=g_{n}(Y)$. We define a function $g:(E, \mathcal{E}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ by

$$
g(y)= \begin{cases}\lim _{n \rightarrow \infty} g_{n}(y), & \text { if exists or is }+\infty \\ 0, & \text { otherwises }\end{cases}
$$

Then g is a $(E, \mathcal{E}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$-measurable function. Moreover, we have

$$
X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)=\lim _{n \rightarrow \infty} g_{n}(Y(\omega))=g(Y(\omega)), \quad \omega \in \Omega .
$$

So we identify $X=g(Y)$.
Finally, we conclude for every $\sigma(Y)$-measurable function X by using the decomposition $X=X^{+}{ }_{-}$ X^{-}.

Exercise 5. Recall that a gamma distribution with parameter $c>0$ and $\theta>0$ has density:

$$
\frac{\theta^{c}}{\Gamma(c)} x^{c-1} \mathrm{e}^{-\theta x} \mathbf{1}_{\{x>0\}}
$$

(i) Check that the sum Z of two independent exponential random variables X, Y with parameter $\theta>0$ has a gamma distribution with parameter $(2, \theta)$. Moreover, determine the conditional expectation of X given Z and prove that for every non-negative measurable function h, almost surely,

$$
\mathbb{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) \mathrm{d} u .
$$

(ii) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z is uniform on $[0, Z]$, in other words, for any h a non-negative measurable function,

$$
\mathbb{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) \mathrm{d} u, \quad \text { a.s. }
$$

Prove that X and $Z-X$ are independent with distribution $\exp (\theta)$.

Solution.

(i) For $\forall g$ non-negative measurable function:

$$
\begin{aligned}
& \mathbb{E}[h(X) g(Z)] \\
= & \mathbb{E}[h(X) g(X+Y)] \\
= & \int_{\mathbb{R}^{2}} h(x) g(x+y) \theta e^{-\theta x} \mathbf{1}_{\{x \geq 0\}} \theta e^{-\theta y} \mathbf{1}_{\{y \geq 0\}} d x d y \\
= & \int_{\mathbb{R}^{2}} h(x) g(z) \theta^{2} e^{-\theta z} \mathbf{1}_{\{x \geq 0\}} \mathbf{1}_{\{z \geq x\}} d x d z \\
= & \int_{\mathbb{R}} g(z) \theta^{2} e^{-\theta z} z \mathbf{1}_{\{z \geq 0\}} d z\left(\int_{0}^{z} \frac{1}{z} h(x) d x\right) \\
= & \mathbb{E}\left[g(Z)\left(\frac{1}{Z} \int_{0}^{Z} h(u) d u\right)\right]
\end{aligned}
$$

(ii) We first prove that $\forall h$ bounded $\mathcal{B}\left(\mathbb{R}^{2}\right)$-measurable function:

$$
\mathbb{E}[h(X, Z) \mid Z]=\int_{\mathbb{R}} h(u, Z) \frac{\mathbf{1}_{\{0 \leq u \leq Z\}}}{Z} d u .
$$

Let \mathcal{H} be the class of bounded $\mathcal{B}\left(\mathbb{R}^{2}\right)$-measurable function that makes this identity hold. \mathcal{H} is clearly a vector space that contains constant functions. We can easily check that \mathcal{H} contains any indicator function on a rectangle in \mathbb{R}^{2}; i.e. $h(x, y)=\mathbf{1}_{\{x \in(a, b)\}} \mathbf{1}_{\left\{y \in\left(a^{\prime}, b^{\prime}\right)\right\}}$. Note that rectangles \mathbb{R}^{2} form a π-system that generates the Borel sigma-algebra (see Theorem 1.23 Klenke). Using monotone convergence theorem (for integrals and for conditional expectations), we can prove that if $h_{n} \uparrow h$ with $h_{n} \in \mathcal{H}$ and h bounded, then $h \in \mathcal{H}$. So we have justifies the conditions in monotone class theorems for functions. Therefore, we conclude that the identity holds for all $\mathcal{B}\left(\mathbb{R}^{2}\right)$-measurable function. Thus we know $\forall f, g$ bounded measurable functions:

$$
\begin{aligned}
\mathbb{E}[f(X) g(Z-X)] & =\mathbb{E}[\mathbb{E}[f(X) g(Z-X) \mid Z]] \\
& =\mathbb{E}\left[\int_{\mathbb{R}} f(u) g(Z-u) \frac{\mathbf{1}_{\{0 \leq u \leq Z\}}}{Z} d u\right] \\
& =\int_{\mathbb{R}^{2}} f(u) g(z-u) \frac{\mathbf{1}_{\{0 \leq u \leq z\}}}{z} \theta^{2} z e^{-\theta z} \mathbf{1}_{\{z \geq 0\}} d u d z \\
& =\int_{\mathbb{R}^{2}} f(u) g(y) \theta^{2} e^{-\theta(u+y)} \mathbf{1}_{\{y \geq 0\}} \mathbf{1}_{\{u \geq 0\}} d u d y
\end{aligned}
$$

which shows that $(X, Z-X)$ are independent $\exp (\theta)$ random variables.

Exercise 6. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra.
(i) Prove that if $\mathbb{E}\left[X^{2}\right]<\infty$ and $\mathbb{E}[X \mid \mathcal{G}]$ has the same distribution as X, then $\mathbb{E}[X \mid \mathcal{G}]=X$ a.s. Hint: You can prove that $\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}]^{2}\right]=\mathbb{E}\left[X^{2}\right]$.
(ii) Prove (i) under assumption $\mathbb{E}[|X|]<\infty$ (instead of $\left.\mathbb{E}\left[X^{2}\right]<\infty\right)$.

Hint: We may consider $\mathbb{E}[|Y|-Y ; \mathbb{E}[Y \mid \mathcal{G}]>0]$ in order to prove $\operatorname{sgn}(Y)=\operatorname{sgn}(\mathbb{E}[Y \mid \mathcal{G}])$ a.s.; then take $Y=X-c$ for all rational c to get the desire conclusion.

Solution.

(i) if X and $\mathbb{E}[X \mid \mathcal{G}]$ have same law, then

$$
\mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}]^{2}\right]
$$

We also have

$$
\mathbb{E}[X \mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[\mathbb{E}[X \mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{G}]]=\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}]^{2}\right] .
$$

Then

$$
\mathbb{E}\left[(X-\mathbb{E}[X \mid \mathcal{G}])^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X \mathbb{E}[X \mid \mathcal{G}]]+\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}]^{2}\right]=0
$$

It follows that $X=\mathbb{E}[X \mid \mathcal{G}]$ a.s.
(ii) Fix $c \in \mathbb{Q}$. Let $Y:=X-c$, then Y and $\mathbb{E}[Y \mid \mathcal{G}]$ have the same law. So we have $\mathbb{E}[|Y|]=$ $\mathbb{E}[|\mathbb{E}[Y \mid \mathcal{G}]|]$ and it follows that

$$
\mathbb{E}[\mathbb{E}[|Y| \mid \mathcal{G}]-|\mathbb{E}[Y \mid \mathcal{G}]|]=\mathbb{E}[|Y|]-\mathbb{E}[|\mathbb{E}[Y \mid \mathcal{G}]|]=0 .
$$

By Jensen's inequality, we also have:

$$
\mathbb{E}[|Y| \mid \mathcal{G}] \geq|\mathbb{E}[Y \mid \mathcal{G}]|, \quad \mathbb{P} \text {-a.s.. }
$$

So we deduce that $\mathbb{E}[|Y| \mid \mathcal{G}]=|\mathbb{E}[Y \mid \mathcal{G}]| \mathbb{P}$-a.s..
Then we have:

$$
\begin{aligned}
\mathbb{E}[|Y|-Y ; \mathbb{E}[Y \mid \mathcal{G}] \geq 0] & =\mathbb{E}\left[|Y| \mathbf{1}_{\{\mathbb{E}|Y| \mathcal{G}] \geq 0\}}-Y \mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}]>\geq 0\}}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[|Y| \mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}} \mid \mathcal{G}\right]\right]-\mathbb{E}\left[\mathbb{E}\left[Y \mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}} \mid \mathcal{G}\right]\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}} \mathbb{E}[|Y| \mid \mathcal{G}]\right]-\mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}} \mathbb{E}[Y \mid \mathcal{G}]\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}} \mathbb{E}[|Y| \mid \mathcal{G}]\right]-\mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\}}|\mathbb{E}[Y \mid \mathcal{G}]|\right] \\
& =0 .
\end{aligned}
$$

Define a function: $\operatorname{sgn}(y)=1$ when $y \geq 0$ and $\operatorname{sgn}(y)=-1$ when $y<0$. Then the calculation above implies that (up to a \mathbb{P}-negligible set difference)

$$
\begin{equation*}
\{\mathbb{E}[Y \mid \mathcal{G}] \geq 0\} \subset\{|Y|-Y=0\}=\{Y \geq 0\} . \tag{1}
\end{equation*}
$$

Similarly, we also have $\mathbb{E}[|Y|+Y ; \mathbb{E}[Y \mid \mathcal{G}] \leq 0]=0$, which implies

$$
\begin{equation*}
\{\mathbb{E}[Y \mid \mathcal{G}] \leq 0\} \subset\{|Y|+Y=0\}=\{Y \leq 0\} . \tag{2}
\end{equation*}
$$

Combining (1) and (2), we have:

$$
\operatorname{sgn}(Y)=\operatorname{sgn}(\mathbb{E}[Y \mid \mathcal{G}]) \text { a.s. }
$$

$\forall c \in \mathbb{Q}$, replace Y by $X-c$, we have $\operatorname{sgn}(X-c)=\operatorname{sgn}(\mathbb{E}[X \mid \mathcal{G}]-c)$ a.s.. As a consequence $(\mathbb{Q}$ is countable), \mathcal{P}-a.s. $\operatorname{sgn}(X-c)=\operatorname{sgn}(\mathbb{E}[X \mid \mathcal{G}]-c)$ holds for all $c \in \mathbb{Q}$. We conclude that $X=\mathbb{E}[X \mid \mathcal{G}]$ a.s..

