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For the exercise class 17.02.2020.

For any set E, we denote by P(E) the powerset of E, i.e. the set of all subsets of E.

Exercise 1. Consider two measurable spaces (Ω,F) and (E, E). Suppose that E = σ(A) with some
A ⊂ P(E). Show that a mapping f : (Ω,F)→ (E, E) is measurable, if

f−1(A) ∈ F for every A ∈ A.

Exercise 2. Consider two measurable spaces (E, E) and (F,F) and a function f : E → F .

(i) Show that {B ⊂ F : f−1B ∈ E} is a sigma-algebra.

(ii) Show that σ(f) := {f−1B ⊂ E : B ∈ F} is a sigma-algebra.

(iii) Let A ⊂ P(F ). Then f−1(σ(A)) = σ(f−1(A)).

Exercise 3. Let E ⊂ Ω. Show that FE := {A ∩ E : A ∈ F} is a sigma-algebra. If F = σ(E),
that is F is generated by for E , where E is a a collection of subsets of Ω. Then prove the identity
FE = σ({A ∩ E : A ∈ E}).

Exercise 4 (Factorization lemma). Let Y : (Ω,F) → (E, E) be measurable. Show that, for every
random variable X : (Ω, σ(Y )) → (R̄ := [−∞,+∞],B(R̄)), there exists a measurable function
g : (E, E)→ (R̄,B(R̄)), such that X = g(Y ).

Solution. Reference of this exercise: Corollary 1.97 in Klenke.
We start with the case that X is a σ(Y ) simple function: that is X =

∑k
i=1 λk1Ak

, where λk ≥ 0 and
Ak ∈ σ(Y ). By the definition of the sigma-algebra σ(Y ), the fact that Ak ∈ σ(Y ) implies that there
exists Bk ∈ E such that Y −1(Bk) = Ak. Define g :=

∑k
i=1 λk1{Bk}, which is (E, E)→ (R̄,B(R̄))-

measurable. Then we have the identity, for every ω ∈ Ω:

X(ω) =

k∑
i=1

λk1{Ak}(ω) =

k∑
i=1

λk1{Y −1(Bk)}(ω) =

k∑
i=1

λk1{Bk}(Y (ω)) = g(Y (ω)).

This is the say X = g(Y ).
Now consider a non-negative σ(Y )-measurable function X . Then there exists a sequence of simple
function (Xn, n ∈ N), such that Xn ≤ Xn+1 for each n ∈ N and limn→∞Xn = X . Applying the
statement in the previous step, we have, for each n ∈ N, a (E, E) → (R̄,B(R̄))-measurable function
gn, such that Xn = gn(Y ). We define a function g : (E, E)→ (R̄,B(R̄)) by

g(y) =

{
limn→∞ gn(y), if exists or is +∞
0, otherwises.
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Then g is a (E, E)→ (R̄,B(R̄))-measurable function. Moreover, we have

X(ω) = lim
n→∞

Xn(ω) = lim
n→∞

gn(Y (ω)) = g(Y (ω)), ω ∈ Ω.

So we identify X = g(Y ).
Finally, we conclude for every σ(Y )-measurable function X by using the decomposition X = X+ −
X−.

Exercise 5. Recall that a gamma distribution with parameter c > 0 and θ > 0 has density:

θc

Γ(c)
xc−1e−θx1{x>0}.

(i) Check that the sum Z of two independent exponential random variables X,Y with parameter
θ > 0 has a gamma distribution with parameter (2, θ). Moreover, determine the conditional
expectation of X given Z and prove that for every non-negative measurable function h, almost
surely,

E [h(X)|Z] =
1

Z

∫ Z

0
h(u)du.

(ii) Conversely, let Z be a random variable with gamma distribution with parameter (2, θ), and
suppose X is a random variable whose conditional distribution given Z is uniform on [0, Z], in
other words, for any h a non-negative measurable function,

E [h(X)|Z] =
1

Z

∫ Z

0
h(u)du, a.s.

Prove that X and Z −X are independent with distribution exp(θ).

Solution.

(i) For ∀g non-negative measurable function:

E [h(X)g(Z)]

= E [h(X)g(X + Y )]

=

∫
R2

h(x)g(x+ y)θe−θx1{x≥0}θe
−θy1{y≥0}dxdy

=

∫
R2

h(x)g(z)θ2e−θz1{x≥0}1{z≥x}dxdz

=

∫
R
g(z)θ2e−θzz1{z≥0}dz

(∫ z

0

1

z
h(x)dx

)
= E

[
g(Z)

(
1

Z

∫ Z

0
h(u)du

)]

(ii) We first prove that ∀h bounded B(R2)-measurable function:

E [h(X,Z)|Z] =

∫
R
h(u, Z)

1{0≤u≤Z}

Z
du.
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Let H be the class of bounded B(R2)-measurable function that makes this identity hold. H is
clearly a vector space that contains constant functions. We can easily check thatH contains any
indicator function on a rectangle in R2; i.e. h(x, y) = 1{x∈(a,b)}1{y∈(a′,b′)}. Note that rectangles
R2 form a π-system that generates the Borel sigma-algebra (see Theorem 1.23 Klenke). Using
monotone convergence theorem (for integrals and for conditional expectations), we can prove
that if hn ↑ h with hn ∈ H and h bounded, then h ∈ H. So we have justifies the conditions
in monotone class theorems for functions. Therefore, we conclude that the identity holds for all
B(R2)-measurable function. Thus we know ∀f, g bounded measurable functions:

E [f(X)g(Z −X)] = E [E [f(X)g(Z −X)|Z]]

= E
[∫

R
f(u)g(Z − u)

1{0≤u≤Z}

Z
du

]
=

∫
R2

f(u)g(z − u)
1{0≤u≤z}

z
θ2ze−θz1{z≥0}dudz

=

∫
R2

f(u)g(y)θ2e−θ(u+y)1{y≥0}1{u≥0}dudy

which shows that (X,Z −X) are independent exp(θ) random variables.

Exercise 6. Let G ⊂ F be a sub-σ-algebra.

(i) Prove that if E
[
X2
]
<∞ and E [X|G] has the same distribution as X , then E [X|G] = X a.s.

Hint: You can prove that E
[
E [X|G]2

]
= E

[
X2
]
.

(ii) Prove (i) under assumption E [|X|] <∞ (instead of E
[
X2
]
<∞).

Hint: We may consider E [|Y | − Y ;E [Y |G] > 0] in order to prove sgn(Y ) = sgn(E [Y |G])
a.s.; then take Y = X − c for all rational c to get the desire conclusion.

Solution.

(i) if X and E [X|G] have same law, then

E
[
X2
]

= E
[
E [X|G]2

]
.

We also have
E [XE [X|G]] = E [E [XE [X|G] |G]] = E

[
E [X|G]2

]
.

Then

E
[
(X − E [X|G])2

]
= E

[
X2
]
− 2E [XE [X|G]] + E

[
E [X|G]2

]
= 0.

It follows that X = E [X|G] a.s.

(ii) Fix c ∈ Q. Let Y := X − c, then Y and E [Y |G] have the same law. So we have E [|Y |] =
E [|E [Y |G] |] and it follows that

E
[
E [|Y ||G]−

∣∣E [Y |G]
∣∣] = E [|Y |]− E

[∣∣E [Y |G]
∣∣] = 0.
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By Jensen’s inequality, we also have:

E [|Y ||G] ≥ |E [Y |G] |, P-a.s..

So we deduce that E [|Y ||G] = |E [Y |G] | P-a.s..

Then we have:

E [|Y | − Y ;E [Y |G] ≥ 0] = E
[
|Y |1{E[Y |G]≥0} − Y 1{E[Y |G]>≥0}

]
= E

[
E
[
|Y |1{E[Y |G]≥0}|G

]]
− E

[
E
[
Y 1{E[Y |G]≥0}|G

]]
= E

[
1{E[Y |G]≥0}E [|Y ||G]

]
− E

[
1{E[Y |G]≥0}E [Y |G]

]
= E

[
1{E[Y |G]≥0}E [|Y ||G]

]
− E

[
1{E[Y |G]≥0}|E [Y |G] |

]
= 0.

Define a function: sgn(y) = 1 when y ≥ 0 and sgn(y) = −1 when y < 0. Then the calculation
above implies that (up to a P-negligible set difference)

{E [Y |G] ≥ 0} ⊂ {|Y | − Y = 0} = {Y ≥ 0}. (1)

Similarly, we also have E [|Y |+ Y ;E [Y |G] ≤ 0] = 0, which implies

{E [Y |G] ≤ 0} ⊂ {|Y |+ Y = 0} = {Y ≤ 0}. (2)

Combining (1) and (2), we have:

sgn(Y ) = sgn(E [Y |G]) a.s.

∀c ∈ Q, replace Y by X − c, we have sgn(X − c) = sgn(E [X|G]− c) a.s.. As a consequence
(Q is countable), P-a.s. sgn(X− c) = sgn(E [X|G]− c) holds for all c ∈ Q. We conclude that
X = E [X|G] a.s. .
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