Sheet 1

For the exercise class 17.02.2020.

For any set E, we denote by $\mathcal{P}(E)$ the powerset of E, i.e. the set of all subsets of E.

Exercise 1. Consider two measurable spaces (Ω, \mathcal{F}) and (E, \mathcal{E}) . Suppose that $\mathcal{E} = \sigma(\mathcal{A})$ with some $\mathcal{A} \subset \mathcal{P}(E)$. Show that a mapping $f: (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ is measurable, if

$$f^{-1}(A) \in \mathcal{F}$$
 for every $A \in \mathcal{A}$.

Exercise 2. Consider two measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) and a function $f: E \to F$.

- (i) Show that $\{B \subset F : f^{-1}B \in \mathcal{E}\}$ is a sigma-algebra.
- (ii) Show that $\sigma(f) := \{f^{-1}B \subset E \colon B \in \mathcal{F}\}$ is a sigma-algebra.
- (iii) Let $\mathcal{A} \subset \mathcal{P}(F)$. Then $f^{-1}(\sigma(\mathcal{A})) = \sigma(f^{-1}(\mathcal{A}))$.

Exercise 3. Let $E \subset \Omega$. Show that $\mathcal{F}_E := \{A \cap E \colon A \in \mathcal{F}\}$ is a sigma-algebra. If $\mathcal{F} = \sigma(\mathcal{E})$, that is \mathcal{F} is generated by for \mathcal{E} , where \mathcal{E} is a collection of subsets of Ω . Then prove the identity $\mathcal{F}_E = \sigma(\{A \cap E \colon A \in \mathcal{E}\})$.

Exercise 4 (Factorization lemma). Let $Y:(\Omega,\mathcal{F})\to (E,\mathcal{E})$ be measurable. Show that, for every random variable $X:(\Omega,\sigma(Y))\to (\bar{\mathbb{R}}:=[-\infty,+\infty],\mathcal{B}(\bar{\mathbb{R}}))$, there exists a measurable function $g:(E,\mathcal{E})\to (\bar{\mathbb{R}},\mathcal{B}(\bar{\mathbb{R}}))$, such that X=g(Y).

Solution. Reference of this exercise: Corollary 1.97 in Klenke.

We start with the case that X is a $\sigma(Y)$ simple function: that is $X = \sum_{i=1}^k \lambda_k \mathbf{1}_{A_k}$, where $\lambda_k \geq 0$ and $A_k \in \sigma(Y)$. By the definition of the sigma-algebra $\sigma(Y)$, the fact that $A_k \in \sigma(Y)$ implies that there exists $B_k \in \mathcal{E}$ such that $Y^{-1}(B_k) = A_k$. Define $g := \sum_{i=1}^k \lambda_k \mathbf{1}_{\{B_k\}}$, which is $(E, \mathcal{E}) \to (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ -measurable. Then we have the identity, for every $\omega \in \Omega$:

$$X(\omega) = \sum_{i=1}^{k} \lambda_k \mathbf{1}_{\{A_k\}}(\omega) = \sum_{i=1}^{k} \lambda_k \mathbf{1}_{\{Y^{-1}(B_k)\}}(\omega) = \sum_{i=1}^{k} \lambda_k \mathbf{1}_{\{B_k\}}(Y(\omega)) = g(Y(\omega)).$$

This is the say X = g(Y).

Now consider a non-negative $\sigma(Y)$ -measurable function X. Then there exists a sequence of simple function $(X_n, n \in \mathbb{N})$, such that $X_n \leq X_{n+1}$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} X_n = X$. Applying the statement in the previous step, we have, for each $n \in \mathbb{N}$, a $(E, \mathcal{E}) \to (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ -measurable function g_n , such that $X_n = g_n(Y)$. We define a function $g: (E, \mathcal{E}) \to (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ by

$$g(y) = \begin{cases} \lim_{n \to \infty} g_n(y), & \text{if exists or is } + \infty \\ 0, & \text{otherwises.} \end{cases}$$

Then g is a $(E,\mathcal{E}) \to (\bar{\mathbb{R}},\mathcal{B}(\bar{\mathbb{R}}))$ -measurable function. Moreover, we have

$$X(\omega) = \lim_{n \to \infty} X_n(\omega) = \lim_{n \to \infty} g_n(Y(\omega)) = g(Y(\omega)), \quad \omega \in \Omega.$$

So we identify X = g(Y).

Finally, we conclude for every $\sigma(Y)$ -measurable function X by using the decomposition $X=X^+-X^-$.

Exercise 5. Recall that a gamma distribution with parameter c > 0 and $\theta > 0$ has density:

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} e^{-\theta x} \mathbf{1}_{\{x>0\}}.$$

(i) Check that the sum Z of two independent exponential random variables X,Y with parameter $\theta>0$ has a gamma distribution with parameter $(2,\theta)$. Moreover, determine the conditional expectation of X given Z and prove that for every non-negative measurable function h, almost surely,

$$\mathbb{E}\left[h(X)|Z\right] = \frac{1}{Z} \int_0^Z h(u) du.$$

(ii) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z is uniform on [0, Z], in other words, for any h a non-negative measurable function,

$$\mathbb{E}\left[h(X)|Z\right] = \frac{1}{Z} \int_0^Z h(u) du, \quad \text{a.s.}$$

Prove that X and Z - X are independent with distribution $\exp(\theta)$.

Solution.

(i) For $\forall g$ non-negative measurable function:

$$\mathbb{E}\left[h(X)g(Z)\right]$$

$$= \mathbb{E}\left[h(X)g(X+Y)\right]$$

$$= \int_{\mathbb{R}^{2}} h(x)g(x+y)\theta e^{-\theta x} \mathbf{1}_{\{x\geq 0\}} \theta e^{-\theta y} \mathbf{1}_{\{y\geq 0\}} dx dy$$

$$= \int_{\mathbb{R}^{2}} h(x)g(z)\theta^{2} e^{-\theta z} \mathbf{1}_{\{x\geq 0\}} \mathbf{1}_{\{z\geq x\}} dx dz$$

$$= \int_{\mathbb{R}} g(z)\theta^{2} e^{-\theta z} z \mathbf{1}_{\{z\geq 0\}} dz \left(\int_{0}^{z} \frac{1}{z} h(x) dx\right)$$

$$= \mathbb{E}\left[g(Z)\left(\frac{1}{Z}\int_{0}^{Z} h(u) du\right)\right]$$

(ii) We first prove that $\forall h$ bounded $\mathcal{B}(\mathbb{R}^2)$ -measurable function:

$$\mathbb{E}\left[h(X,Z)|Z\right] = \int_{\mathbb{R}} h(u,Z) \frac{\mathbf{1}_{\{0 \le u \le Z\}}}{Z} du.$$

Let \mathcal{H} be the class of bounded $\mathcal{B}(\mathbb{R}^2)$ -measurable function that makes this identity hold. \mathcal{H} is clearly a vector space that contains constant functions. We can easily check that \mathcal{H} contains any indicator function on a rectangle in \mathbb{R}^2 ; i.e. $h(x,y)=\mathbf{1}_{\{x\in(a,b)\}}\mathbf{1}_{\{y\in(a',b')\}}$. Note that rectangles \mathbb{R}^2 form a π -system that generates the Borel sigma-algebra (see Theorem 1.23 Klenke). Using monotone convergence theorem (for integrals and for conditional expectations), we can prove that if $h_n \uparrow h$ with $h_n \in \mathcal{H}$ and h bounded, then $h \in \mathcal{H}$. So we have justifies the conditions in monotone class theorems for functions. Therefore, we conclude that the identity holds for all $\mathcal{B}(\mathbb{R}^2)$ -measurable function. Thus we know $\forall f,g$ bounded measurable functions:

$$\begin{split} \mathbb{E}\left[f(X)g(Z-X)\right] &= \mathbb{E}\left[\mathbb{E}\left[f(X)g(Z-X)|Z\right]\right] \\ &= \mathbb{E}\left[\int_{\mathbb{R}}f(u)g(Z-u)\frac{\mathbf{1}_{\{0\leq u\leq Z\}}}{Z}du\right] \\ &= \int_{\mathbb{R}^2}f(u)g(z-u)\frac{\mathbf{1}_{\{0\leq u\leq z\}}}{z}\theta^2ze^{-\theta z}\mathbf{1}_{\{z\geq 0\}}dudz \\ &= \int_{\mathbb{R}^2}f(u)g(y)\theta^2e^{-\theta(u+y)}\mathbf{1}_{\{y\geq 0\}}\mathbf{1}_{\{u\geq 0\}}dudy \end{split}$$

which shows that (X, Z - X) are independent $exp(\theta)$ random variables.

Exercise 6. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra.

- (i) Prove that if $\mathbb{E}\left[X^2\right] < \infty$ and $\mathbb{E}\left[X|\mathcal{G}\right]$ has the same distribution as X, then $\mathbb{E}\left[X|\mathcal{G}\right] = X$ a.s. **Hint:** You can prove that $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]^2\right] = \mathbb{E}\left[X^2\right]$.
- (ii) Prove (i) under assumption $\mathbb{E}\left[|X|\right] < \infty$ (instead of $\mathbb{E}\left[X^2\right] < \infty$). **Hint:** We may consider $\mathbb{E}\left[|Y| Y; \mathbb{E}\left[Y|\mathcal{G}\right] > 0\right]$ in order to prove $\mathrm{sgn}(Y) = \mathrm{sgn}(\mathbb{E}\left[Y|\mathcal{G}\right])$ a.s.; then take Y = X c for all rational c to get the desire conclusion.

Solution.

(i) if X and $\mathbb{E}[X|\mathcal{G}]$ have same law, then

$$\mathbb{E}\left[X^2\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]^2\right].$$

We also have

$$\mathbb{E}\left[X\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[X\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]^2\right].$$

Then

$$\mathbb{E}\left[(X - \mathbb{E}\left[X|\mathcal{G}\right])^2\right] = \mathbb{E}\left[X^2\right] - 2\mathbb{E}\left[X\mathbb{E}\left[X|\mathcal{G}\right]\right] + \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]^2\right] = 0.$$

It follows that $X = \mathbb{E}[X|\mathcal{G}]$ a.s.

(ii) Fix $c \in \mathbb{Q}$. Let Y := X - c, then Y and $\mathbb{E}[Y|\mathcal{G}]$ have the same law. So we have $\mathbb{E}[|Y|] = \mathbb{E}[|\mathbb{E}[Y|\mathcal{G}]|]$ and it follows that

$$\mathbb{E}\Big[\mathbb{E}\left[|Y||\mathcal{G}\right] - \left|\mathbb{E}\left[Y|\mathcal{G}\right]\right|\Big] = \mathbb{E}\left[|Y|\right] - \mathbb{E}\left[\left|\mathbb{E}\left[Y|\mathcal{G}\right]\right|\right] = 0.$$

By Jensen's inequality, we also have:

$$\mathbb{E}[|Y||\mathcal{G}] \geq |\mathbb{E}[Y|\mathcal{G}]|, \quad \mathbb{P}\text{-a.s.}.$$

So we deduce that $\mathbb{E}[|Y||\mathcal{G}] = |\mathbb{E}[Y|\mathcal{G}]|$ P-a.s..

Then we have:

$$\begin{split} \mathbb{E}\left[|Y|-Y;\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\right] &= \mathbb{E}\left[|Y|\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}} - Y\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] > \geq 0\}}\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[|Y|\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}|\mathcal{G}\right]\right] - \mathbb{E}\left[\mathbb{E}\left[Y\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}|\mathcal{G}\right]\right] \\ &= \mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}\mathbb{E}\left[|Y||\mathcal{G}\right]\right] - \mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}\mathbb{E}\left[Y|\mathcal{G}\right]\right] \\ &= \mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}\mathbb{E}\left[|Y||\mathcal{G}\right]\right] - \mathbb{E}\left[\mathbf{1}_{\{\mathbb{E}\left[Y|\mathcal{G}\right] \geq 0\}}|\mathbb{E}\left[Y|\mathcal{G}\right]\right]\right] \\ &= 0 \end{split}$$

Define a function: sgn(y) = 1 when $y \ge 0$ and sgn(y) = -1 when y < 0. Then the calculation above implies that (up to a \mathbb{P} -negligible set difference)

$$\{\mathbb{E}[Y|\mathcal{G}] \ge 0\} \subset \{|Y| - Y = 0\} = \{Y \ge 0\}.$$
 (1)

Similarly, we also have $\mathbb{E}[|Y| + Y; \mathbb{E}[Y|\mathcal{G}] \le 0] = 0$, which implies

$$\{\mathbb{E}[Y|\mathcal{G}] \le 0\} \subset \{|Y| + Y = 0\} = \{Y \le 0\}.$$
 (2)

Combining (1) and (2), we have:

$$sgn(Y) = sgn(\mathbb{E}[Y|\mathcal{G}]) \ a.s.$$

 $\forall c \in \mathbb{Q}$, replace Y by X-c, we have $sgn(X-c) = sgn(\mathbb{E}\left[X|\mathcal{G}\right]-c)$ a.s.. As a consequence $(\mathbb{Q} \text{ is countable})$, \mathcal{P} -a.s. $sgn(X-c) = sgn(\mathbb{E}\left[X|\mathcal{G}\right]-c)$ holds for all $c \in \mathbb{Q}$. We conclude that $X = \mathbb{E}\left[X|\mathcal{G}\right]$ a.s. .