Wahrscheinlichkeitstheorie 2 FSS 2020

Sheet 12

Hand in your solutions before 17:00 Thursday 21/May/2020.

We consider a Markov chain X_n that takes values in a countable set E. Let Q denote its transition probability. Let $Q^n(x, y) := \mathbb{P}(X_n = y | X_0 = x) = \mathbb{P}_x(X_n = y)$, for all $n \ge 0$. Let θ_k be the shift operator on the product space $E^{\mathbb{N}_0}$: $\theta_k((\omega_n)_{n \in \mathbb{N}_0}) = (\omega_{k+n})_{n \in \mathbb{N}_0}$.

Exercise 1. Various (and quick) questions on state classification. We denote by $N_x = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = x\}}$. Justify your answers by giving a proof or a counterexample.

- (i) Give an example such that the set of points visited by the chain issued from a point x is not almost surely constant.
- (ii) Give an example such that the set of points visited by the chain issued from a point x is almost surely constant, the order of the first three points visited is not deterministic, and such that x is not recurrent.
- (iii) Let $x, y \in E$. Do we have: y is recurrent and there exists $n \ge 0$ such that $Q^n(x, y) > 0$ implies $N_y = \infty$, \mathbb{P}_x almost surely?
- (iv) Give an example where there exists $n \ge 0$ such that $Q^n(x, y) > 0$ but for all $p \ge 0$, $Q^p(y, x) = 0$.
- (v) Let $x, y \in E$. Show that $\mathbb{E}_x[N_y] = \infty \implies y$ is recurrent. Is it equivalent?
- (vi) Is the following situation possible: $0 < \mathbb{E}_x[N_y] < \infty$ and y is recurrent?
- (vii) If $\mathbb{E}_x[N_y] = \infty$, which values can take $\mathbb{E}_y[N_x]$?
- (viii) Suppose that for every $x \in E$, the set $V_x := \{y \in E : \exists n \text{ s.t. } Q^n(x, y) > 0\}$ is finite. Show that there exists recurrent states.
- (ix) Suppose that there exists $x_0 \in E$ such that for every $x \in E$, there exists $n_x \ge 0$, $Q^{n_x}(x_0, x) > 0$ and $\mathbb{P}_x(T_{x_0} < \infty) = 1$, where $T_{x_0} = \inf\{n \ge 0 : X_n = x_0\}$. Is the chain recurrent ?

Exercise 2. Show that X is irreducible if and only if there exist no strict, non-empty, subset F of E such that

for all
$$x \in F, y \in F^c$$
, $Q(x, y) = 0$.

Exercise 3 (Gambler's Ruin). Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with $\mathbb{P}(X_1 = 1) = 1 - \mathbb{P}(X_1 = -1) = p$ for some $p \in (0, 1)$. Given X_0 , then $S_n := \sum_{i=0}^n X_i$ is a Markov chain.

(i) Define $T_0 := \inf\{n \ge 0 : S_n = 0\}$. for all $i \ge 0$, let $h(i) = \mathbb{P}_i(T_0 < \infty)$. Calculate h(i), for all $i \ge 0$. Hint: you can use Ex2 in the additional sheet.

(ii) Given an arbitrary number $s \in (0, 1)$, we notice that $s^{T_0} = s^{T_0} \mathbf{1}_{\{T_0 < \infty\}}$. Prove that:

$$\mathbb{E}_1\left[s^{T_0}\right] = ps\mathbb{E}_2\left[s^{T_0}\right] + qs$$

(iii) Given an arbitrary number $s \in (0, 1)$, explain why $\mathbb{E}_2[s^{T_1}] = \mathbb{E}_1[s^{T_0}]$, and prove that:

$$\mathbb{E}_2\left[s^{T_0}\right] = \mathbb{E}_1\left[s^{T_0}\right]^2.$$

Hint: Use strong Markov property for T_1 .

(iv) We define a function $\phi : (0,1) \to (0,1)$ by $\phi(s) = \mathbb{E}_1[s^{T_0}]$. Prove that $\phi(s)$ satisfies the following equation:

$$\phi(s) = ps\phi^2(s) + qs.$$

(v) Prove that $\lim_{s\to 1^-} \phi(s) = \mathbb{P}_1(T_0 < \infty)$, and $\lim_{s\to 1^-} \phi'(s) = \mathbb{E}_1[T_0 \mathbf{1}_{\{T_0 < \infty\}}]$, then calculate their values.

Exercise 4. This exercise will help us identify recurrent states. We define " $x \to y$ " if $\mathbb{P}_x(T_y < \infty) > 0$; " $x \sim y$ " if and only if $x \to y$ and $y \to x$. Clearly $x \sim y$ is an equivalence relation. Thus E is a union of disjoint equivalence classes under relation \sim :

$$E = \bigcup_{i} E_i,$$

such that for all *i*, if $x, y \in E_i$, then $x \sim y$; if $i \neq j$, and $x \in E_i$, $y \in E_j$, then $x \not\sim y$. We call each E_i an *irreducible class*. E_i is called a *closed* class if for all $x \in E_i$, if $x \to y$, then $y \in E_i$.

- (i) Show that in an irreducible class, all the states are recurrent or all the states are transient. So we can say the class is recurrent or transient.
- (ii) Show that any recurrent class is closed.
- (iii) Show that a finite closed class is recurrent.