Sheet 10

Hand in your solutions before 17:00 Thursday 30/April/2020.
Exercise 1. Let $\left(X_{t}, t \geq 0\right)$ be a continuous stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. For $0 \leq a<b<\infty$, define a function $\int_{a}^{b} X_{t} d t$ from Ω to \mathbb{R} :

$$
\omega \mapsto \int_{a}^{b} X_{t}(\omega) d t:= \begin{cases}\int_{a}^{b} X_{t}(\omega) d t, & \text { if }\left(X_{t}(\omega), t \geq 0\right) \text { is conitnuous; } \\ 0, & \text { otherwises }\end{cases}
$$

Show that $\int_{a}^{b} X_{t} d t$ is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$: i.e. this function is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$-measurable.
Exercise 2. A stochastic process $\left(X_{t}\right)_{0 \leq t \leq 1}$ is called a Brownian bridge if:

- it is a centred Gaussian process with covariance function given by

$$
\operatorname{Cov}\left(X_{s}, X_{t}\right)=s(1-t), \quad s \leq t
$$

- and it is a.s. continuous.
(i) Let $\left(B_{t}, t \geq 0\right)$ be a standard Brownian motion. Show that the process

$$
X_{t}=B_{t}-t B_{1}, \quad t \in[0,1]
$$

is a Brownian bridge. Moreover, prove that B_{1} is independent from $\left(X_{t}, t \in[0,1]\right)$.
(ii) Let $\left(B_{t}, t \geq 0\right)$ be a standard Brownian motion. Show that the process

$$
X_{t}=(1-t) B_{\frac{t}{1-t}}, \quad t \in[0,1] .
$$

is a Brownian bridge.
Exercise 3. Let $\left(B_{t}, t \geq 0\right)$ be a standard Brownian motion.
(i) For an arbitrary $t>0$, calculate $\mathbb{E}\left[B_{t}^{4}\right]$ and $\mathbb{E}\left[\left|B_{t}\right|\right]$.
(ii) For an arbitrary $t>0$, and $a \in \mathbb{R}$, calculate $\mathbb{E}\left[\exp \left(a B_{t}\right)\right]$.
(iii) Let $\mathcal{F}_{1}:=\sigma\left(B_{s}, s \in[0,1]\right)$. Calculate $\mathbb{E}\left[B_{5} \mid \mathcal{F}_{1}\right]$ and $\mathbb{E}\left[B_{5}^{2} \mid \mathcal{F}_{1}\right]$.
(iv) Show that $\mathbb{E}\left[\left|\int_{[0,1]} B_{s} / s d s\right|\right]<\infty$.
(v) Let $\beta_{t}:=B_{t}-\int_{[0, t]} \frac{B_{s}}{s} d s$. Show that $\left(\beta_{t}, t \geq 0\right)$ is a Brownian motion.

Exercise 4. A partition $\Pi=\left(t_{0}, \cdots, t_{n}\right)$ of an interval $[a, b]$ is any sequence of values $a=t_{0}<t_{1}<$ $\cdots t_{n-1}<t_{n}=b$. We fix an arbitrary $[a, b]$, such that $0 \leq a<b$. For $n \in \mathbb{N}$, we pose a partition Π_{n} for $[a, b]$:
$\Pi_{n}=\left(a, a+(b-a) 2^{-n}, \cdots, a+k(b-a) 2^{-n}, a+(k+1)(b-a) 2^{-n}, \cdots, a+\left(2^{n}-1\right)(b-a) 2^{-n}, b\right)$
Let $\left(B_{t}, t \geq 0\right)$ be a standard Brownian motion.
(i) Define $\Delta_{k, n}=B_{a+k(b-a) 2^{-n}}-B_{a+(k-1)(b-a) 2^{-n}}$ for $k=1, \cdots, 2^{n}$. Prove that the sequence $\left(\Delta_{k, n}, k=1, \cdots, 2^{n}\right)$ is a sequence of i.i.d. random variables with Gaussian distribution $\mathcal{N}\left(0,(b-a) 2^{-n}\right)$.
(ii) Let X_{n} be a random variable defined by:

$$
X_{n}=\sum_{k=1}^{2^{n}} \Delta_{k, n}^{2}=\sum_{k=1}^{2^{n}}\left(B_{a+k(b-a) 2^{-n}}-B_{a+(k-1)(b-a) 2^{-n}}\right)^{2}
$$

Calculate $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left(X_{n}\right)$.
(iii) Prove that $X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} b-a$.
(iv) Given a continuous function $f:[a, b] \rightarrow \mathbb{R}$, its total variation on $[a, b]$ is defined to be

$$
\mathrm{TV}(f):=\sup _{\Pi} \sum_{1 \leq k \leq n}\left|f\left(t_{k}\right)-f\left(t_{k-1}\right)\right| \in[0, \infty]
$$

where the supremum runs over the set of all partitions.
Show that almost surely, the path of a Brownian motion has infinite total variation on any interval $[a, b]$.
Hint: Use the continuity of a Brownian motion and (iii).

