Wahrscheinlichkeitheorie 2 FSS 2020

Sheet 1

For the exercise class 17.02.2020.

For any set E, we denote by $\mathcal{P}(E)$ the powerset of E, i.e. the set of all subsets of E.

Exercise 1. Consider two measurable spaces (Ω, \mathcal{F}) and (E, \mathcal{E}) . Suppose that $\mathcal{E} = \sigma(\mathcal{A})$ with some $\mathcal{A} \subset \mathcal{P}(E)$. Show that a mapping $f: (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ is measurable, if

 $f^{-1}(A) \in \mathcal{F}$ for every $A \in \mathcal{A}$.

Exercise 2. Consider two measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) and a function $f: E \to F$.

- (i) Show that $\{B \subset F \colon f^{-1}B \in \mathcal{E}\}$ is a sigma-algebra.
- (ii) Show that $\sigma(f) := \{f^{-1}B \subset E \colon B \in \mathcal{F}\}\$ is a sigma-algebra.
- (iii) Let $\mathcal{A} \subset \mathcal{P}(F)$. Then $f^{-1}(\sigma(\mathcal{A})) = \sigma(f^{-1}(\mathcal{A}))$.

Exercise 3. Let $E \subset \Omega$. Show that $\mathcal{F}_E := \{A \cap E : A \in \mathcal{F}\}$ is a sigma-algebra. If $\mathcal{F} = \sigma(\mathcal{E})$, that is \mathcal{F} is generated by for \mathcal{E} , where \mathcal{E} is a collection of subsets of Ω . Then prove the identity $\mathcal{F}_E = \sigma(\{A \cap E : A \in \mathcal{E}\})$.

Exercise 4. Let $Y: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be measurable. Show that, for every random variable $X: (\Omega, \sigma(Y)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, there exists a measurable function $g: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that X = g(Y).

Exercise 5. Recall that a gamma distribution with parameter c > 0 and $\theta > 0$ has density:

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} \mathrm{e}^{-\theta x} \mathbf{1}_{\{x>0\}}.$$

(i) Check that the sum Z of two independent exponential random variables X, Y with parameter $\theta > 0$ has a gamma distribution with parameter $(2, \theta)$. Moreover, determine the conditional expectation of X given Z and prove that for every non-negative measurable function h, almost surely,

$$\operatorname{E}[h(X)|Z] = \frac{1}{Z} \int_0^Z h(u) \mathrm{d}u$$

(ii) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z is uniform on [0, Z], in other words, for any h a non-negative measurable function,

$$\operatorname{E}\left[h(X)|Z\right] = \frac{1}{Z} \int_0^Z h(u) \mathrm{d}u, \quad \text{a.s}$$

Prove that X and Z - X are independent with distribution $\exp(\theta)$.

Exercise 6. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra.

- (i) Prove that if $E[X^2] < \infty$ and $E[X|\mathcal{G}]$ has the same distribution as X, then $E[X|\mathcal{G}] = X$ a.s. **Hint:** You can prove that $E[E[X|\mathcal{G}]^2] = E[X^2]$.
- (ii) Prove (i) under assumption $E[|X|] < \infty$ (instead of $E[X^2] < \infty$). **Hint:** We may consider $E[|Y| - Y; E[Y|\mathcal{G}] > 0]$ in order to prove $sgn(Y) = sgn(E[Y|\mathcal{G}])$ a.s.; then take Y = X - c for all rational c to get the desire conclusion.