Wahrscheinlichkeitheorie 2

FSS 2020

Universität Mannheim
Prof. M. Slowik, Dr. Q. Shi

Sheet 1

For the exercise class 17.02.2020.

For any set E, we denote by $\mathcal{P}(E)$ the powerset of E, i.e. the set of all subsets of E.
Exercise 1. Consider two measurable spaces (Ω, \mathcal{F}) and (E, \mathcal{E}). Suppose that $\mathcal{E}=\sigma(\mathcal{A})$ with some $\mathcal{A} \subset \mathcal{P}(E)$. Show that a mapping $f:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$ is measurable, if

$$
f^{-1}(A) \in \mathcal{F} \quad \text { for every } A \in \mathcal{A}
$$

Exercise 2. Consider two measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) and a function $f: E \rightarrow F$.
(i) Show that $\left\{B \subset F: f^{-1} B \in \mathcal{E}\right\}$ is a sigma-algebra.
(ii) Show that $\sigma(f):=\left\{f^{-1} B \subset E: B \in \mathcal{F}\right\}$ is a sigma-algebra.
(iii) Let $\mathcal{A} \subset \mathcal{P}(F)$. Then $f^{-1}(\sigma(\mathcal{A}))=\sigma\left(f^{-1}(\mathcal{A})\right)$.

Exercise 3. Let $E \subset \Omega$. Show that $\mathcal{F}_{E}:=\{A \cap E: A \in \mathcal{F}\}$ is a sigma-algebra. If $\mathcal{F}=\sigma(\mathcal{E})$, that is \mathcal{F} is generated by for \mathcal{E}, where \mathcal{E} is a a collection of subsets of Ω. Then prove the identity $\mathcal{F}_{E}=\sigma(\{A \cap E: A \in \mathcal{E}\})$.

Exercise 4. Let $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be measurable. Show that, for every random variable $X:(\Omega, \sigma(Y)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, there exists a measurable function $g:(\mathbb{R}, \mathcal{B}(\mathbb{R})) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that $X=g(Y)$.

Exercise 5. Recall that a gamma distribution with parameter $c>0$ and $\theta>0$ has density:

$$
\frac{\theta^{c}}{\Gamma(c)} x^{c-1} \mathrm{e}^{-\theta x} \mathbf{1}_{\{x>0\}} .
$$

(i) Check that the sum Z of two independent exponential random variables X, Y with parameter $\theta>0$ has a gamma distribution with parameter $(2, \theta)$. Moreover, determine the conditional expectation of X given Z and prove that for every non-negative measurable function h, almost surely,

$$
\mathrm{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) \mathrm{d} u .
$$

(ii) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z is uniform on $[0, Z]$, in other words, for any h a non-negative measurable function,

$$
\mathrm{E}[h(X) \mid Z]=\frac{1}{Z} \int_{0}^{Z} h(u) \mathrm{d} u, \quad \text { a.s. }
$$

Prove that X and $Z-X$ are independent with distribution $\exp (\theta)$.

Exercise 6. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra.
(i) Prove that if $\mathrm{E}\left[X^{2}\right]<\infty$ and $\mathrm{E}[X \mid \mathcal{G}]$ has the same distribution as X, then $\mathrm{E}[X \mid \mathcal{G}]=X$ a.s. Hint: You can prove that $\mathrm{E}\left[\mathrm{E}[X \mid \mathcal{G}]^{2}\right]=\mathrm{E}\left[X^{2}\right]$.
(ii) Prove (i) under assumption $\mathrm{E}[|X|]<\infty$ (instead of $\left.\mathrm{E}\left[X^{2}\right]<\infty\right)$. Hint: We may consider $\mathrm{E}[|Y|-Y ; \mathrm{E}[Y \mid \mathcal{G}]>0]$ in order to prove $\operatorname{sgn}(Y)=\operatorname{sgn}(\mathrm{E}[Y \mid \mathcal{G}])$ a.s.; then take $Y=X-c$ for all rational c to get the desire conclusion.

