Wahrscheinlichkeitstheorie 1 FSS 2021

Universität Mannheim Prof. L. Döring, Dr. Q. Shi

Sheet 6

For the exercise class 26.04.2021. Hand in your solutions before 17:00 Saturday 24.04.2021.

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}_0}, \mathbb{P})$ for all the exercises. All the random variables are assumed to be real-valued.

Exercise 1. Read the lecture notes and summarize the optional stopping theorems (we have a few versions) and the convergence theorems about martingales.

Exercise 2. Consider a metric space (E, d). For $x \in E$ and $B \subseteq E$, define

$$d(x,B) := \inf\{d(x,y) \colon y \in B\}.$$

- (i) If d(x, B) = 0, then $x \in \overline{B}$, the closure of B.
- (ii) Suppose that $B \neq \emptyset$. Prove that

$$|d(x,B) - d(y,B)| \le d(x,y).$$

This is to say, the function $x \mapsto d(x, B)$ is 1-Lipschitz.

(iii) Let $A \subseteq E$ be closed. Show that, for any $\epsilon > 0$, the function

$$f_A^{\epsilon}(x) = (1 - d(x, A)/\epsilon)^+$$

satisfies the following properties:

- $\forall x \in A, f_A^{\epsilon}(x) = 1$
- if $d(x, A) \ge \epsilon$, then $f_A^{\epsilon}(x) = 0$
- $f_A^{\epsilon} \to \mathbf{1}_{\{A\}}$ pointwisely
- $f_A^{\epsilon} \leq 1$
- $f_A^{\epsilon} \in \operatorname{Lip}_{1/\epsilon}(E)$ and $f_A^{\epsilon} \in C_b(E)$

Why do we have to assume A to be closed?

Exercise 3. We define a collection of subsets on \mathbb{N} :

$$\mathcal{T} := \{ A \subseteq \mathbb{N} \colon A = \emptyset \text{ or } \mathbb{N} \setminus A \text{ is finite } \}.$$

- (i) Show that \mathcal{T} is a topology.
- (ii) Let $A, B \in \mathcal{T}$. Suppose that $A \neq \emptyset$ and $B \neq \emptyset$. Then prove that $A \cap B \neq \emptyset$.
- (iii) Show that the topological space $(\mathbb{N}, \mathcal{T})$ is not metrizable. (In fact, if there is a metric d on \mathbb{N} , then you can try to find two open balls (with respect to the metric d) that do not satisfy the property in (ii). If \mathcal{T} is the topology generated by all open balls on the metric space (\mathbb{N}, d) , then we are in contradiction to (ii)).

Exercise 4. Consider \mathbb{R} endowed with the Lebesgue measure Leb. Let L_{∞} be the space of measurable functions that are bounded almost everywhere, with the essential supremum of its absolute value as a norm: for any measurable function f,

$$||f||_{\infty} = \inf\{C \ge 0 \colon \text{Leb}(f > C) = 0\}.$$

Show that the metric space L^{∞} (with metric induced by the norm $\|\cdot\|_{\infty}$) is not separable. (consider all the indicator function $\mathbf{1}_{(-r,r)}, r > 0$)

Exercise 5. Find the weak limit, if exists, of the following sequence.

- (i) $\mathbb{P}_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{k/n}$, where δ denotes the Dirac measure.
- (ii) $\mathbb{P}_n = \mathcal{N}(0, 1/n)$, the normal distribution.