Wahrscheinlichkeitstheorie 1 FSS 2021

Sheet 3

For the exercise class 22.03.2021.

Hand in your solutions before 17:00 Saturday 20.03.2021.

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}_0}, \mathbb{P})$ for all the exercises. All the random variables are assumed to be real-valued.

Exercise 1. Let S, T be (\mathcal{F}_n) -stopping times.

- (i) show that $\{S \leq T\} \in \mathcal{F}_{S \wedge T}$ and $\{S = T\} \in \mathcal{F}_{S \wedge T}$.
- (ii) show that S + T is an (\mathcal{F}_n) -stopping time.

Exercise 2. Let T be a $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ -stopping time. Suppose that there exists $N \in \mathbb{N}$ and $\varepsilon \in (0, 1)$, such that for every $n \in \mathbb{N}$,

$$\mathbb{P}(T \le n + N | \mathcal{F}_n) > \varepsilon$$
, almost surely.

(i) Prove that for each $k \in \mathbb{N}$, we have $\mathbb{P}(T > kN) \leq (1 - \varepsilon)^k$.

Hint:
$$\mathbb{P}(T > kN) = \mathbb{P}(T > kN, T > (k-1)N).$$

(ii) Deduce that $\mathbb{E}[T] < \infty$.

Exercise 3. (From Sheet 2; try to do it this time) Recall that a gamma distribution with parameter c > 0 and $\theta > 0$ has density:

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} e^{-\theta x} \mathbf{1}_{\{x>0\}}.$$

- (i) Let X, Y be two independent exponential random variables with parameter $\theta > 0$ and Z = X + Y. Determine the conditional distribution of X given Z = z.
- (ii) (Optional) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z = z is uniform on [0, z], for z > 0. Prove that X and Z X are independent with exponential distribution Exponential (θ) .

Exercise 4. Let $(X_n, n \ge 1)$ is a sequence of i.i.d. random variables with $\mathbb{P}(X_n = 1) = 1/2$ and $\mathbb{P}(X_n = -1) = 1/2$. Let $\mathcal{G}_n := \sigma(X_1, X_2, \dots, X_n)$ with $\mathcal{G}_0 := \{\emptyset, \Omega\}$. Let $S_n := \sum_{i=1}^n X_i$ for every $n \in \mathbb{N}_0$.

- (i) Prove that $(S_n^2 n)_{\mathbb{N}_0}$ is a (\mathcal{G}_n) -martingale.
- (ii) Prove that $(S_n^3 3nS_n)_{\mathbb{N}_0}$ is a (\mathcal{G}_n) -martingale.
- (iii) Find a polynomial P(s, n) with degree 4 on s and degree 2 on n, such that $(P(S_n, n))_{n \in \mathbb{N}_0}$ is a (\mathcal{G}_n) -martingale.

(iv) Prove that, in general, for a polynomial P(x, y), the process $(P(S_n, n))_{n \in \mathbb{N}_0}$ is a (\mathcal{G}_n) -martingale, if

$$P(s+1, n+1) + P(s-1, n+1) = 2P(s, n).$$

(v) Let $\lambda \in \mathbb{R}$. Find a constant $c \in \mathbb{R}$ such that $\exp(\lambda S_n - cn)_{n \in \mathbb{N}}$ is a (\mathcal{G}_n) -martingale.

Exercise 5 (Part of Lecture; watch the video and then try to do it by yourself). Let $(X_n)_{n \in \mathbb{N}_0}$ be a (\mathcal{F}_n) -submartingale. Let T be (\mathcal{F}_n) -stopping time.

- (i) Suppose that (X_n)_{n∈N₀} is bounded and T is a.s. finite (the meaning is different from "T is a.s. bounded"!). Prove that E[X₀] ≤ E[X_T] < ∞.
- (ii) Suppose that there exists a constant K > 0 such that for \mathbb{P} -a.e. $\omega \in \Omega$,

$$|X_n(\omega) - X_{n-1}(\omega)| \le K, \forall n \in \mathbb{N}.$$

We also suppose that $\mathbb{E}[T] < \infty$. Show that $\mathbb{E}[X_0] \leq \mathbb{E}[X_T] < \infty$.

Hint: use the bounded stopping time $T \wedge M$ for some constant $M \in \mathbb{N}$ and the dominated convergence theorem.