Wahrscheinlichkeitstheorie 1 FSS 2021

Sheet 2

For the exercise class 15.03.2021. Hand in your solutions before 17:00 Saturday 13.03.2021.

Exercise 1. Calculate the following conditional expectations and determine the conditional distributions.

- (i) $\mathbb{E}[(Y X)^+ | X]$, where X, Y are independent uniform random variables on [0, 1].
- (ii) $\mathbb{E}[X|X+Y]$, where X, Y are independent Poisson random variables with parameters λ and μ respectively.
- (iii) $\mathbb{E}[X|Y]$, where (X, Y) has a joint distribution with density:

$$4y(x-y)e^{-(x+y)}\mathbf{1}_{\{0 < y < x\}}.$$

Exercise 2. For $n \in \mathbb{N}$, let $X_n \in \mathcal{L}^1$ be a non-negative integrable random variable. Suppose that $\liminf_{n\to\infty} \mathbb{E}[X_n] < \infty$. Let $\mathcal{G} \subset \mathcal{A}$ be a sub- σ -algebra. Show that $\liminf_{n\to\infty} X_n \in \mathcal{L}^1$ and prove the analogue of the Fatou lemma:

$$\mathbb{E}[\liminf_{n \to \infty} X_n \mid \mathcal{G}] \le \liminf_{n \to \infty} \mathbb{E}[X_n \mid \mathcal{G}] \quad \mathbb{P}\text{-a.s.}.$$

- **Exercise 3.** (i) Let X, Y be independent with standard normal distribution $\mathcal{N}(0, 1)$. Show that, for any $z \in \mathbb{R}$, the conditional distribution $\mathbb{P}(X \in \cdot \mid X + Y = z)$ is $\mathcal{N}(0, z/2)$.
 - (ii) Let X, Y are independent Poisson random variables with parameters λ and μ respectively. Determine the conditional distribution $\mathbb{P}(X \in \cdot \mid X + Y = n)$ for $n \in \mathbb{N}$.

Exercise 4.

- (i) Let X, Y, Z be three random variables such that (X, Z) and (Y, Z) are identically distributed. We denote by P_X the distribution of X (so P_X is a probability measure on (ℝ, B(ℝ)): P_X is the image measure of P under X, i.e. P_X := P ∘ X).
 - (a) Prove that for any measurable function f non-negative or such that f(X) is integrable,

$$\mathbb{E}[f(X)|Z] = \mathbb{E}[f(Y)|Z]$$
 almost surely.

(b) Let g be a measurable function non-negative or such that g(Z) is integrable. Set

$$h_1(X) \coloneqq \mathbb{E}[g(Z)|X]$$
 and $h_2(Y) \coloneqq \mathbb{E}[g(Z)|Y].$

Show that $h_1 = h_2 \mathbb{P}_X$ -almost surely.

- (ii) Let T_1, T_2, \ldots, T_n be i.i.d. integrable random variables and set $S_n = T_1 + \ldots + T_n$.
 - (a) Prove that for any $j \in \{1, ..., n\}$, $\mathbb{E}[T_j|S_n] = n^{-1}S_n$ almost surely.
 - (b) Compute $\mathbb{E}[S_n|T_j]$ for any $j \in \{1, \ldots, n\}$.

Exercise 5. (Optional) Recall that a gamma distribution with parameter c > 0 and $\theta > 0$ has density:

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} e^{-\theta x} \mathbf{1}_{\{x>0\}}.$$

- (i) Let X, Y be two independent exponential random variables with parameter $\theta > 0$. Check that the sum Z = X + Y has a gamma distribution with parameter $(2, \theta)$. Moreover, determine the regular conditional distribution of X given Z.
- (ii) Conversely, let Z be a random variable with gamma distribution with parameter $(2, \theta)$, and suppose X is a random variable whose conditional distribution given Z = z is uniform on [0, z], for z > 0. Prove that X and Z X are independent with exponential distribution Exponential (θ) .