Wahrscheinlichkeitstheorie 1 FSS 2021

Sheet 1

For the exercise class 08.03.2021.

Hand in your solutions before 17:00 Sunday 07.03.2021.

For any set E, we denote by $\mathcal{P}(E)$ the powerset of E, i.e. the set of all subsets of E. For all the exercises, unless otherwise specified, we work on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and all the random variables and functions are assumed to be real-valued.

Exercise 1 (Theorem 1.81 in Klenke). Consider two measurable spaces (E, \mathcal{E}) and (F, \mathcal{F}) and a function $f: E \to F$.

- (i) Show that $\{B \subset F \colon f^{-1}B \in \mathcal{E}\}$ is a sigma-algebra.
- (ii) Show that $\sigma(f) := \{f^{-1}B \subset E \colon B \in \mathcal{F}\}$ is a sigma-algebra.
- (iii) Let $\mathcal{B} \subset \mathcal{P}(F)$. Then $f^{-1}(\sigma(\mathcal{B})) = \sigma(f^{-1}(\mathcal{B}))$.

Exercise 2. (Important!)[Factorization lemma] Let $X, Y : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be random variables. Show that, if X is $(\sigma(Y), \mathcal{B}(\mathbb{R}))$ -measurable, then there exists a measurable function $g : (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that X = g(Y).

Exercise 3. (Important!) The three questions are independent.

- (i) Let X and Y be i.i.d. Bernoulli variables: $\mathbb{P}(X = 1) = 1 \mathbb{P}(X = 0) = p$ for some $p \in [0,1]$. We set $Z := \mathbf{1}_{\{X+Y=0\}}$. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[Y|Z]$. Are these random variables independent?
- (ii) Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra and $A \in \mathcal{F}$. We consider $B := \{\mathbb{E}[\mathbf{1}_A | \mathcal{G}] = 0\} \in \mathcal{G}$. Show that $B \subset \Omega \setminus A$ almost surely, i.e. $\mathbb{P}(A \cap B) = 0$.
- (iii) Let X be a square-integrable random variable and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. We define the *conditional variance*

$$\operatorname{Var}(X|\mathcal{G}) \coloneqq \mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}].$$

Prove the following identity:

$$\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X|\mathcal{G})] + \operatorname{Var}(\mathbb{E}[X|\mathcal{G}]).$$

Exercise 4. Let X and Y be two integrable random variables.

- (i) Assume that X = Y almost surely. Prove that, almost surely, $\mathbb{E}[X|Y] = Y$ and $\mathbb{E}[Y|X] = X$.
- (ii) (Optional) Conversely, suppose that X and Y are such that E[X|Y] = Y and E[Y|X] = X almost surely. Prove that X = Y almost surely.
 Hint: You can consider E[(X Y)1_{X>c,Y≤c}] + E[(X Y)1_{{X≤c,Y≤c}}]. (Recall that for any x, y ∈ R, x > y is equivalent to ∃c ∈ Q such that x > c ≥ y.)