

Prof. Dr. Leif Döring Stochastik I

Leonardo Vela

4. Übung

1. Das Lebesgue-Maß auf einem Intervall.

In dieser Aufgabe zeigt ihr, dass die zwei Ansätze aus Bemerkung 1.4.5 der Vorlesung gleich sind.

Ansatz 1: Sei $\mathcal{B}([0,1]) := \sigma(\{(a,b] \mid 0 \le a \le b \le 1\})$ und $\bar{\lambda}_{[0,1]}$ die Fortsetzung der Mengenfunktion $\lambda : \{(a,b] \mid 0 \le a \le b \le 1\} \to \mathbb{R}, (a,b] \mapsto b-a$ auf $\mathcal{B}([0,1])$ ist. Diesen Ansatz nennen wir Lebesgue-Maß durch Carathéodory.

Ansatz 2: Sei $\mathcal{B}([0,1]) := \{B \cap [0,1] \mid B \in \mathcal{B}(\mathbb{R})\}$ und $\lambda_{[0,1]}(B) := \lambda(B), B \in \mathcal{B}([0,1])$, wobei λ das Lebesgue-Maß auf $\mathcal{B}(\mathbb{R})$ bezeichnet. Diesen Ansatz nennen wir Lebesgue-Maß durch Einschränkung.

- a) Zeige, dass die σ -Algebren der beiden Ansätze gleich sind. (2 Punkte)
- b) Zeige, dass $\bar{\lambda}_{[0,1]}$ und $\lambda_{[0,1]}$ Maße auf $\mathcal{B}([0,1])$ sind und $\bar{\lambda}_{[0,1]} = \lambda_{[0,1]}$ gilt. (2 Punkte)

2. Verteilung der Masse der Normalverteilung.

Sei das Wahrscheinlichkeitsmaß \mathbb{P} der Verteilung $\mathcal{N}(0, \sigma^2)$ auf dem messbaren Raum $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ gegeben. Für welche σ lässt sich aus der Ungleichung (die wir bald selbst beweisen werden)

$$\int_{r}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx \le e^{-\frac{r^2}{2\sigma^2}}, \quad r \ge 0,$$

folgern, dass

$$\mathbb{P}([-1,1]) \ge 0.99$$

gilt?

Hinweis: Überlegt euch, warum man mit der obigen Ungleichung auch $\mathbb{P}((-\infty,1))$ abschätzen kann. Die allgemeine Normalverteilung $\mathcal{N}(\mu,\sigma^2)$ wurde in der großen Übung definiert.

(6 Punkte)

3. Eigenschaften messbarer Funktionen.

Seien die messbaren Räume $(\Omega, \mathcal{A}), (\Omega', \mathcal{A}'), (\Omega'', \mathcal{A}'')$ und die messbaren Funktionen

$$f: \Omega \to \Omega', \quad g: \Omega' \to \Omega''$$

gegeben.

a) Zeige, dass $g \circ f \mathcal{A}-\mathcal{A}''$ -messbar ist.

(2 Punkte)

b) Zeige, dass $\sigma(f) := \{f^{-1}(A) : A \in \mathcal{A}'\}$ die kleinste σ -Algebra ist, bezüglich der f messbar ist.

(3 Punkte)

c) Zeige, dass für zwei σ -Algebren $\mathcal{B}, \mathcal{B}'$ mit $\mathcal{A} \subseteq \mathcal{B}$ und $\mathcal{B}' \subseteq \mathcal{A}'$ die Abbildung f auch $(\mathcal{B}, \mathcal{B}')$ messbar ist.

(2 Punkte)

4. Der Vektorraum der messbaren Funktionen.

Sei (Ω, \mathcal{A}) ein messbarer Raum. Zeige, dass für \mathcal{A} - $\mathcal{B}(\mathbb{R})$ -messbare Funktionen

$$f \colon \Omega \to \mathbb{R}, \quad g \colon \Omega \to \mathbb{R}$$

und $\alpha \in \mathbb{R}$ auch

$$\alpha f, f + g, f - g, f \cdot g$$

 \mathcal{A} - $\mathcal{B}(\mathbb{R})$ -messbare Funktionen sind. Folgere daraus, dass der Raum der \mathcal{A} - $\mathcal{B}(\mathbb{R})$ -messbaren Funktionen ein Vektorraum ist.

Hinweis: Addition und Multiplikation sind hier punktweise zu verstehen, also zum Beispiel $(f+g)(\omega) = f(\omega) + g(\omega)$ für alle $\omega \in \Omega$.

(6 Punkte)

5. Bildmaße von Pseudoinversen.

Sei \mathbb{P} das Maß der Verteilung $\mathcal{U}([0,1])$ auf $\mathcal{B}(\mathbb{R})$, F die Verteilungsfunktion einer diskreten Zufallsvariable die nur endlich viele Werte annimmt und

$$F^{-1}: [0,1] \to \bar{\mathbb{R}}, x \mapsto \inf\{s \in \mathbb{R} \mid F(s) \ge x\}.$$

Als Konvention benutzen wir hier inf $\emptyset = -\infty$.

a) Zeichnet für das Beispiel $F: \mathbb{R} \to [0,1], x \mapsto \sum_{k=1}^5 \frac{1}{5} \mathbf{1}_{[k,\infty)}(x)$ die Funktion F^{-1} .

(2 Punkte)

b) Zeige, dass $F^{-1}(\mathcal{B}([0,1]),\mathcal{B}(\bar{\mathbb{R}}))$ -messbar ist.

(2 Punkte)

c) Bestimme die Verteilungsfunktion des Bildmaßes $\mathbb{P} \circ (F^{-1})^{-1}$ an. (3 Punkte) Hinweis: $(F^{-1})^{-1}$ bezeichnet das Urbild der Abbildung F^{-1} . Weil die Notation schrecklich aussehen würde, nutzen wir hier eine alternative Schreibweise für das Bildmaß: Statt μ_f schreibt man manchmal auch $\mu \circ f^{-1}$.

Die Lösungen sind in Zweiergruppen bis Dienstag, den 27. Oktober 2020, 10:00 Uhr, in Ilias als ein einziges PDF Dokument oder in den Briefkästen in A5 abzugeben.