Stochastik I

1. Große Übung

Leonardo Vela, Martin Dattge

30. September 2020

Administratives

- VL Download Link auf Website.
- Große Übung und Tutorien
 - Es wird nichts aufgezeichnet (Datenschutz).
 - Slides der GÜ und Notizen der Tutoren der werden hochgeladen.
 - Auf Zoom: Vorlesungswiederholung, donnerstags B5 oder freitags B2/B4 (ab 08./09.10.),
 - Auf Zoom: Tipps zum Übungsblatt, freitags, B3 (ab 02.10.).
 - Tutorien in Präsenz: Vorlesungswiederholung, montags, B4 (ab 05.10.), Zusätzliche Aufgaben, montags, B2 (05.10.), Auseinandernehmen eines fiesen Beweises, mittwochs, B3 (ab 07.10.)
 - · Zoom Räume und normale Räume auf Website
 - ⇒ schreibt uns ganz formlos, falls ihr Wünsche oder Anregungen habt!

Administratives

- Übungsblätter
 - ÜB Abgabe in Briefkästen mit Namen oder als PDF-File mit File-Name Nachname1_Nachname2_BlattNr. in ILIAS
 - Ab zweiter Woche bekommt ihr einen Tutor zugewiesen, in dessen Briefkasten ihr die Blätter einwerfen sollt (falls ihr Print abgebt).
 - Abholung der Print Übungsblätter im dritten Stock von B6, Bauteil A

σ -Algebra

Definition

Sei Ω nicht leer. $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ heißt σ -Algebra, falls

- 1. $\Omega \in \mathcal{A}$,
- 2. $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$, das nennt man auch stabil (oder abgeschlossen) unter Komplementbildung,
- 3. $A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$, das nennt man auch stabil (oder abgeschlossen) unter abzählbarer Vereinigung.

Elemente von \mathcal{A} heißen **messbare Mengen**. Ist $\mathcal{A} \subseteq \mathcal{B}$ und \mathcal{A}, \mathcal{B} sind σ -Algebra, so nennt man \mathcal{A} Unter- σ -Algebra von \mathcal{B} .

Aufgabe 1

a) Sei $\Omega = \{1, 2, 3\}$ und $\mathcal{A} = \{\{1\}, \{2\}, \{3\}, \{1, 3\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$. Ist \mathcal{A} eine σ -Algebra über Ω ?

b) Zeige oder widerlege, dass die Vereinigung von zwei σ -Algebren wieder eine σ -Algebra ist.

Maß

Definition

Für eine σ -Algebra $\mathcal A$ heißt $\mu\colon\mathcal A\longrightarrow[0,\infty]$ ein **Maß auf** $\mathcal A$, falls folgende Eigenschaften gelten:

- 1. $\mu(\emptyset) = 0$
- 2. Sind $A_1, A_2, ... \in \mathcal{A}$ paarweise disjunkte Mengen, so gilt $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A)$. Wir nennen diese Eigenschaft σ -Additivität.

Ein Maß μ heißt **endlich**, falls $\mu(\Omega) < \infty$. μ heißt **Wahrscheinlichkeitsmaß**, falls $\mu(\Omega) = 1$.

Aufgabe 2

Betrachte den messbaren Raum $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, $p \in (0, 1)$ und δ_k das Dirac-Maß. Definiere die Abbildung

$$\mu: \mathcal{P}(\mathbb{N}) \to \mathbb{R}, A \mapsto \sum_{k \in \mathbb{N}} \delta_k(A) \cdot (1-p)^{k-1} \cdot p.$$

- a) Zeige (bzw. wiederhole), dass das Dirac-Maß ein Maß ist.
- b) Zeige, dass μ ein Maß ist.
- c) Ist μ ein endliches Maß?