

Prof. Dr. Leif Döring

Niklas Dexheimer

Stochastik I

12. Übung

1. Weiteres zur Unabhängigkeit.

a) Seien X, Y unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Zeige, dass

$$\mathbb{P}(X \in A | Y \in B) = \mathbb{P}(X \in A)$$

für alle $A, B \in \mathcal{B}(\mathbb{R})$ gilt mit

$$\mathbb{P}(Y \in B) > 0.$$

(1 Punkt)

b) Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Zeige, dass die paarweise Unabhängigkeit von $A_1, A_2, A_3 \in \mathcal{A}$ im Allgemeinen nicht die Unabhängigkeit von A_1, A_2, A_3 impliziert. Hinweis: Ihr könnt (aber müsst nicht) das folgende Beispiel nutzen

$$\Omega = \{112, 121, 211, 222\}, \quad \mathcal{A} = \mathcal{P}(\Omega),$$

$$\mathbb{P}(\{\omega\}) = \frac{1}{4}, \quad \forall \omega \in \Omega,$$

und die Ereignisse $A_i := \{1 \text{ an } i\text{-ter Stelle}\}, i = 1, 2, 3.$

(2 Punkte)

c) Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $A, B \in \mathcal{A}$. Zeige

i)
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

(1 Punkt)

ii) Falls $\mathbb{P}(A) \in \{0,1\}$ gilt, sind A und B unabhängig.

- $(1 \ Punkt)$
- iii) Falls A und B unabhängig sind, so sind A^C und B unabhängig.
- $(1 \ Punkt)$
- d) Seien X, Y, Z Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Zeige, dass im Allgemeinen aus der paarweisen Unabhängigkeit von X, Y, Z nicht die Unabhängigkeit von X, Y, Z folgt.

 (3 Punkte)

2. Gedächtnislosigkeit der Exponentialverteilung.

Es gilt folgende Aussage: Sei $h: [0, \infty) \to \mathbb{R}$ eine stetige Funktion mit

$$h(x+y) = h(x) + h(y), \quad \forall x, y \ge 0.$$

Dann existiert ein $a \in \mathbb{R}$, sodass h(x) = ax für alle $x \ge 0$ gilt.

a) Sei $G: [0, \infty) \to (0, \infty)$ eine stetige Funktion mit

$$G(x+y) = G(x)G(y), \quad \forall x, y \ge 0.$$

Folgere aus der gegebenen Aussage, dass ein $a \in \mathbb{R}$ existiert, sodass $G(x) = e^{ax}$ für alle $x \ge 0$ gilt.

(1 Punkt)

b) Stellt euch vor, dass ihr eine Wartezeit mittels einer Zufallsvariable X modellieren wollt, die gedächtnislos ist (denkt an den Aufzug!), stetig verteilt und nur Werte in $\mathbb{R}^+\setminus\{0\}$ annehmen kann. Zeige, dass für X dann

$$X \sim \text{Exp}(\lambda)$$

für ein $\lambda > 0$ gelten muss. Mathematisch genau ausgedrückt, sollt ihr Folgendes zeigen: Sei X eine stetig verteilte Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ mit $\mathbb{P}(X \leq 0) = 0$. Dann gilt

$$X \sim \text{Exp}(\lambda)$$

für ein $\lambda > 0$ genau dann, wenn X gedächtnislos ist, d.h.

$$\mathbb{P}(X \ge s + t | X \ge s) = \mathbb{P}(X \ge t), \quad \forall s, t \ge 0.$$

(6 Punkte)

3. Konvergenz von Zufallsvariablen

Sei $\alpha > 0$ und $(X_n)_{n \in \mathbb{N}}$ eine Folge von Zufallsvariablen mit $X_1 = 1$ und

$$\mathbb{P}(X_n = 1) = 1 - \frac{1}{n^{\alpha}}, \quad \mathbb{P}(X_n = n) = \frac{1}{n^{\alpha}}, \quad \forall n \ge 2.$$

- a) Für welche $\alpha > 0$ konvergiert $(X_n)_{n \in \mathbb{N}}$ stochastisch gegen 1? (4 Punkte)
- b) Sei $p \ge 1$. Für welche $\alpha > 0$ konvergiert $(X_n)_{n \in \mathbb{N}}$ im p-ten Mittel gegen 1? (4 Punkte)
- c) Für welche $\alpha > 0$ konvergiert $(X_n)_{n \in \mathbb{N}}$ in Verteilung gegen 1? (4 Punkte)

4. Noch mehr Konvergenz von Zufallsvariablen.

Sei $X \sim \mathcal{U}([-1,1])$ und $(X_n)_{n \in \mathbb{N}}$ eine Folge von Zufallsvariablen mit

$$X_n = (-1)^n X, \quad \forall n \in \mathbb{N}.$$

- a) Zeige, dass $(X_n)_{n\in\mathbb{N}}$ in Verteilung gegen X konvergiert. (4 Punkte)
- b) Zeige, dass $(X_n)_{n\in\mathbb{N}}$ nicht stochastisch gegen X konvergiert. (4 Punkte)
- c) Zeige, dass $(X_n)_{n\in\mathbb{N}}$ nicht fast sicher gegen X konvergiert. (4 Punkte)

5. Zusatzaufgabe: Ja, ist denn heut' schon Weihnachten?

Habt ihr die ersten 4 Aufgaben so fleißig bearbeitet, dass ihr 10000 Zusatzpunkte verdient habt?

(10000 Zusatzpunkte)

Die Lösungen sind in Zweiergruppen bis Dienstag den 26. November 2019, 18:00 Uhr, in den Briefkasten eures Tutors in A5 einzuwerfen.