

Prof. Dr. Leif Döring

Stochastik I

Niklas Dexheimer

2. Übung

1. Äquivalente Definition von Dynkin-Systemen und Eigenschaften von Algebren.

a) Zeige, dass die Definition eines Dynkin-Systems aus der Vorlesung äquivalent ist zu der Folgenden:

Sei Ω eine nicht leere Menge und $\mathcal{D} \subseteq \mathcal{P}(\Omega)$. Dann ist das Mengensystem \mathcal{D} ein Dynkin-System, wenn folgende Eigenschaften erfüllt sind:

- (i) $\Omega \in \mathcal{D}$,
- (ii) $A, B \in \mathcal{D}$ und $A \subseteq B \implies B \setminus A \in \mathcal{D}$,
- (iii) $A_1, A_2, \ldots \in \mathcal{D}$ und $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$.

(5 Punkte)

b) Zeige, dass jede Algebra auch stabil unter endlichen Vereinigungen ist, also, dass für jede Algebra $\mathcal A$

$$A_1, A_2, \dots, A_n \in \mathcal{A} \implies \bigcup_{i=1}^n A_i \in \mathcal{A}$$

für alle $n \in \mathbb{N}$ gilt.

(2 Punkte)

2. Eigenschaften von Verteilungsfunktionen.

Sei \mathbb{P} ein Wahrscheinlichkeitsmaß auf dem messbaren Raum $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Dann heißt die Funktion

$$F: \mathbb{R} \to \mathbb{R}, \quad x \mapsto F(x) := \mathbb{P}((-\infty, x]),$$

die Verteilungsfunktion von \mathbb{P} . Zeige, dass eine solche Verteilungsfunktion folgende Eigenschaften erfüllt:

a)
$$0 \le F(x) \le 1$$
 für alle $x \in \mathbb{R}$, (1 Punkt)

b) F ist monoton steigend, (2 Punkte)

c) F ist rechtsseitig stetig, (2 Punkte)

d)
$$\lim_{x \to -\infty} F(x) = 0$$
 und $\lim_{x \to +\infty} F(x) = 1$. (2 Punkte)

Einige Teile dieser Aufgabe hat Leif schon in der Vorlesung besprochen, aber ihr müsst sie natürlich trotzdem lösen. \odot

3. Die Borelsche σ -Algebra auf separablen metrischen Räumen.

Ein separabler metrischer Raum (X, d) ist ein metrischer Raum, der eine höchstens abzählbare Teilmenge besitzt, die dicht in X liegt, das heißt, dass eine höchstens abzählbare Menge $M \subseteq X$ existiert, sodass für alle $x \in X$ und $\epsilon > 0$ ein $m \in M$ existiert, sodass

$$d(x,m) < \epsilon$$

gilt. Die Borelsche σ -Algebra auf einem solchen separablen metrischen Raum (X, d) ist definiert als

$$\mathcal{B}(X) \coloneqq \sigma(\mathcal{E}),$$

wobei \mathcal{E} das Mengensystem der offenen Mengen in (X,d) ist. Zeige, dass das Mengensystem

$$\mathcal{E}' := \{B(x,r) : x \in X, r > 0\}$$

ein Erzeuger von $\mathcal{B}(X)$ ist. B(x,r) bezeichnet hierbei den offenen Ball mit Radius r um den Punkt x bezüglich der Metrik d. (5 Punkte)

4. Erzeuger von σ -Algebren.

(a) Zeige (wie in der großen Übung), dass die Mengensysteme

$$\mathcal{E}_1 := \{(a, \infty) : a \in \mathbb{R}\},$$

$$\mathcal{E}_2 := \{[a, b] : a, b \in \mathbb{R}, a \le b\},$$

$$\mathcal{E}_3 := \{(-\infty, a] : a \in \mathbb{R}\},$$

Erzeuger von $\mathcal{B}(\mathbb{R})$ sind.

(4 Punkte)

Hinweis: Ihr dürft dafür das Ergebnis aus der Vorlesung nutzen, dass die Menge der offenen Intervalle in \mathbb{R} auch ein Erzeuger von $\mathcal{B}(\mathbb{R})$ ist.

(b) Sei
$$\Omega = \{a, b, c, d\}$$
 und $\mathcal{E} = \{\{a, b\}, \{d\}\}\$. Bestimme $\sigma(\mathcal{E})$. (3 Punkte)

(c) Sei Ω eine nicht leere, höchstens abzählbare Menge. Zeige, dass für den Erzeuger $\mathcal{E} = \{\{x\} : x \in \Omega\}$

$$\sigma(\mathcal{E}) = \mathcal{P}(\Omega)$$

gilt. (4 Punkte)

Die Lösungen sind in Zweiergruppen bis Dienstag den 17. September 2019, 18:00 Uhr, in den Briefkasten eures Tutors in A5 einzuwerfen.