Dr. H. Pitters, Dr. Q. Shi

## Week 2

Exercise 1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers. Prove the following statements:

$$
\begin{align*}
\limsup _{n \rightarrow \infty} a_{n}<\alpha & \Rightarrow \quad \exists n \geq 0, \forall k \geq n, a_{k}<\alpha .  \tag{1}\\
\exists n \geq 0, \forall k \geq n, a_{k}<\alpha & \Rightarrow \quad \limsup _{n \rightarrow \infty} a_{n} \leq \alpha .  \tag{2}\\
\limsup _{n \rightarrow \infty} a_{n}>\alpha & \Rightarrow \quad \forall n \geq 0, \exists k \geq n, a_{k}>\alpha .  \tag{3}\\
\forall n \geq 0, \exists k \geq n, a_{k}<\alpha & \Rightarrow \quad \limsup _{n \rightarrow \infty} a_{n} \geq \alpha . \tag{4}
\end{align*}
$$

Write down similar statements for $\lim _{\inf }^{n \rightarrow \infty} a_{n}$.
Exercise 2. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of $\mathbb{R}$. Prove the following statements:

$$
\begin{gathered}
\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c}=\liminf _{n \rightarrow \infty}\left(A_{n}\right)^{c}, \\
\limsup _{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right)=\limsup _{n \rightarrow \infty} A_{n} \cup \limsup _{n \rightarrow \infty} B_{n}, \\
\limsup _{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right) \subset \limsup _{n \rightarrow \infty} A_{n} \cap \underset{n \rightarrow \infty}{\limsup } B_{n} .
\end{gathered}
$$

Exercise 3 (Indicator function). Let $A \subset E$. We define a function $\mathbb{1}_{A}: E \rightarrow\{0,1\}$ by

$$
\mathbb{1}_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A .\end{cases}
$$

(i) Let $A, B \subset E$. Write $\mathbb{1}_{A \cap B}$ and $\mathbb{1}_{A \cup B}$ in terms of $\mathbb{1}_{A}$ and $\mathbb{1}_{B}$.
(ii) Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of $E$. Rewrite $\mathbb{1}_{\bigcap_{n \geq 1} A_{n}}$ and $\mathbb{1}_{\cup_{n \geq 1} A_{n}}$ in terms of $\mathbb{1}_{A_{n}}$.

Exercise 4. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of $\mathbb{R}$.
(i) Prove that

$$
\begin{aligned}
& \mathbb{1}_{\limsup _{n \rightarrow \infty} A_{n}}=\limsup _{n \rightarrow \infty} \mathbb{1}_{A_{n}} . \\
& \mathbb{1}_{\liminf _{n \rightarrow \infty} A_{n}}=\liminf _{n \rightarrow \infty} \\
& \mathbb{1}_{A_{n}}
\end{aligned} .
$$

(ii) Prove that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} A_{n}=\left\{\left(\sum_{n \geq 1} \mathbb{1}_{A_{n}}\right)=\infty\right\}, \\
& \liminf _{n \rightarrow \infty} A_{n}=\left\{\left(\sum_{n \geq 1} \mathbb{1}_{\left(A_{n}\right)^{c}}\right)<\infty\right\},
\end{aligned}
$$

Exercise 5 (Cantor Set). The Cantor ternary set $\mathcal{C}$ is created by iteratively deleting the open middle third from a set of line segments. We begin with the closed unit interval $C_{0}:=[0,1]$ and let $C_{1}$ denote the set obtained by deleting the open middle third interval, i.e.

$$
C_{1}=[0,1 / 3] \cup[2 / 3,1] .
$$

Next, we delete the middle third interval of each subinterval of $C_{1}$; so at the second stage, we get

$$
C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1] .
$$

We repeat this procedure for each subinterval of $C_{2}$ and so on; see Figure.

| $\square$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| - | $\square$ | $\square$ | $\square$ | $\square$ | $\square \square$ | $\square \square$ | $\square \square$ |
| II II |
| \|||| ||| | \|||| ||| | \|||| ||| | \|||| ||| | \|||| ||| | \|||| ||| | \|||| ||| | \|||| ||| |

So we obtain a sequence of compact sets

$$
C_{0} \supset C_{1} \supset C_{2} \supset C_{3} \supset \cdots .
$$

We define the Cantor set $\mathcal{C}$ to be the intersection of all $C_{k}$ :

$$
\mathcal{C}:=\bigcap_{k=0}^{\infty} C_{k} .
$$

Prove the following statements:
(i) $\mathcal{C}$ is compact.
(ii) Given any $x, y \in \mathcal{C}$, there exists $z \notin \mathcal{C}$ that lies between $x$ and $y$, i.e. $x<z<y$.
(iii) $\mathcal{C}$ has no isolated points.
(iv) $\mathcal{C}$ is uncountable and has the cardinality of the continuum.

