Maß- und Integrationstheorie HWS 2019

Week 2

Exercise 1. Let $(a_n)_{n\geq 1}$ be a sequence of real numbers. Prove the following statements:

$$\limsup a_n < \alpha \quad \Rightarrow \quad \exists n \ge 0, \forall k \ge n, a_k < \alpha. \tag{1}$$

$$\exists n \ge 0, \forall k \ge n, a_k < \alpha \quad \Rightarrow \quad \limsup_{n \to \infty} a_n \le \alpha.$$
⁽²⁾

$$\limsup_{n \to \infty} a_n > \alpha \quad \Rightarrow \quad \forall n \ge 0, \exists k \ge n, a_k > \alpha.$$
(3)

$$\forall n \ge 0, \exists k \ge n, a_k < \alpha \quad \Rightarrow \quad \limsup_{n \to \infty} a_n \ge \alpha. \tag{4}$$

Write down similar statements for $\liminf_{n\to\infty} a_n$.

Exercise 2. Let $(A_n)_{n\geq 1}$ be a sequence of subsets of \mathbb{R} . Prove the following statements:

$$\left(\limsup_{n \to \infty} A_n\right)^c = \liminf_{n \to \infty} (A_n)^c,$$
$$\limsup_{n \to \infty} (A_n \cup B_n) = \limsup_{n \to \infty} A_n \cup \limsup_{n \to \infty} B_n,$$
$$\limsup_{n \to \infty} (A_n \cap B_n) \subset \limsup_{n \to \infty} A_n \cap \limsup_{n \to \infty} B_n.$$

Exercise 3 (Indicator function). Let $A \subset E$. We define a function $\mathbb{1}_A \colon E \to \{0, 1\}$ by

$$\mathbb{1}_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

- (i) Let $A, B \subset E$. Write $\mathbb{1}_{A \cap B}$ and $\mathbb{1}_{A \cup B}$ in terms of $\mathbb{1}_A$ and $\mathbb{1}_B$.
- (ii) Let $(A_n)_{n\geq 1}$ be a sequence of subsets of E. Rewrite $\mathbb{1}_{\bigcap_{n\geq 1}A_n}$ and $\mathbb{1}_{\bigcup_{n\geq 1}A_n}$ in terms of $\mathbb{1}_{A_n}$.

Exercise 4. Let $(A_n)_{n \ge 1}$ be a sequence of subsets of \mathbb{R} .

(i) Prove that

$$\mathbb{1}_{\limsup_{n \to \infty} A_n} = \limsup_{n \to \infty} \mathbb{1}_{A_n}.$$
$$\mathbb{1}_{\limsup_{n \to \infty} A_n} = \liminf_{n \to \infty} \mathbb{1}_{A_n}.$$

(ii) Prove that

$$\limsup_{n \to \infty} A_n = \left\{ \left(\sum_{n \ge 1} \mathbb{1}_{A_n} \right) = \infty \right\},$$
$$\liminf_{n \to \infty} A_n = \left\{ \left(\sum_{n \ge 1} \mathbb{1}_{(A_n)^c} \right) < \infty \right\},$$

Exercise 5 (Cantor Set). The Cantor ternary set C is created by iteratively deleting the open middle third from a set of line segments. We begin with the closed unit interval $C_0 := [0, 1]$ and let C_1 denote the set obtained by deleting the open middle third interval, i.e.

$$C_1 = [0, 1/3] \cup [2/3, 1].$$

Next, we delete the middle third interval of each subinterval of C_1 ; so at the second stage, we get

 $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1].$

We repeat this procedure for each subinterval of C_2 and so on; see Figure.

										1
111 1	111	н н	11 11	11	н	- 11	11		н	
			HH HH					11		

So we obtain a sequence of compact sets

$$C_0 \supset C_1 \supset C_2 \supset C_3 \supset \cdots$$
.

We define the Cantor set C to be the intersection of all C_k :

$$\mathcal{C} := \bigcap_{k=0}^{\infty} C_k.$$

Prove the following statements:

- (i) C is compact.
- (ii) Given any $x, y \in C$, there exists $z \notin C$ that lies between x and y, i.e. x < z < y.
- (iii) C has no isolated points.
- (iv) C is uncountable and has the cardinality of the continuum.