Maß- und Integrationstheorie HWS 2019

Universität Mannheim Dr. H. Pitters, Dr. Q. Shi

Sheet 9

For the exercise class 07.11.2019; please hand in your solutions before 01.11.2019.

Exercise 1. Complete the proofs of *Behauptung 4.11 and Behauptung 4.12*.

Exercise 2. (i) We consider \mathbb{R} endowed with the distance $d(x, y) = \mathbb{1}(x \neq y)$. What is the Borel sigma-algebra of the metric space (\mathbb{R}, d) ? What is the sigma-algebra generated by all open balls (under metric d), i.e.

$$\sigma \left(B(x,r) \colon x \in \mathbb{R}, r > 0 \right)?$$

(ii) Let (Ω, \mathcal{F}) be a measurable space. For every $n \ge 1$, let $f_n \colon \Omega \to \mathbb{R}$ be a real-valued $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$ -measurable function. Show that, the set

$$\{\omega \in \Omega \colon \lim_{n \to \infty} f_n(\omega) \text{ exists }\} \in \mathcal{F}.$$

(iii) Let (Ω, \mathcal{F}) be a measurable space and (X, d) be an arbitrary metric space with Borel sigmaalgebra $\mathcal{B}(X)$. For each $n \ge 1$ let $f_n: (\Omega, \mathcal{F}) \to (X, \mathcal{B}(X))$ be a measurable function. Suppose that there exists a function $f: \Omega \to X$, such that for every $\omega \in \Omega$,

$$\lim_{n \to \infty} f_n(\omega) = f(\omega).$$

Show that f is $(\mathcal{F}, \mathcal{B}(X))$ measurable.

Exercise 3. Let $C := C([0,1], \mathbb{R})$, the space of all real-valued continuous functions on [0,1]. The space C is endowed with the uniform metric d:

$$d(f,g) := \sup\{|f(x) - g(x)| \colon x \in [0,1]\}$$

Let $\mathcal{B}(C)$ be the Borel sigma-algebra of the metric space (C, d). For every $x \in [0, 1]$, define a function $\phi_x \colon C \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by

$$\phi_x(f) = f(x).$$

Let $\sigma(f_x, x \in [0, 1])$ be the minimum sigma-algebra such that all function $\phi_x, x \in [0, 1]$ are measurable; see *Beispiel 4.4 5(b)*. Prove the identity $\mathcal{B}(C) = \sigma(f_x, x \in [0, 1])$.

Exercise 4 (Product measurable space). Let $(\Omega_{\alpha}, \mathcal{F}_{\alpha})_{\alpha \in I}$ be a family of measurable spaces. For any collection $A \subset I$, we define a space Ω_A by the Cartesian product

$$\Omega_A := \prod_{\alpha \in A} \Omega_\alpha;$$

i.e. each element in Ω_A is a tuple $(x_\alpha)_{\alpha \in A}$ with $x_\alpha \in \Omega_\alpha$. For any $B \subset A$, we define the projection map $\pi_{A \to B} \colon \Omega_A \to \Omega_B$ by

$$\pi_{A \to B}((x_{\alpha})_{\alpha \in A}) = (x_{\alpha})_{\alpha \in B}.$$

For simplicity, we denote $\pi_A := \pi_{I \to A}$ and $\pi_\alpha := \pi_{\{\alpha\}}$. Moreover, we define a *product sigma-algebra* \mathcal{F}_A on Ω_A by

$$\mathcal{F}_A := \prod_{\alpha \in A} \mathcal{F}_\alpha := \sigma \left(\pi_{A \to \{\alpha\}}^{-1}(B) \colon B \in \mathcal{F}_\alpha, \alpha \in A \right).$$

Recall from *Beispiel 4.4.5(b)* that \mathcal{F}_A is the smallest sigma-algebra on Ω_A such that $(\pi_{A \to \{\alpha\}}, \alpha \in A)$ are all measurable, i.e. $\mathcal{F}_A = \sigma(\pi_{A \to \{\alpha\}}, \alpha \in A)$.

- (i) For any $B \subset A \subset I$, show that $\pi_{A \to B}$ is $(\mathcal{F}_A, \mathcal{F}_B)$ -measurable.
- (ii) For any $E_I \in \Omega_I$ show that there exists an at most countable set $B \subset I$ and $E_B \in \mathcal{F}_B$, such that $E_I = \pi_B^{-1}(E_B)$.
- (iii) If I is at most countable, show that

$$\mathcal{F}_I = \sigma \left(\prod_{\alpha \in I} B_\alpha, B_\alpha \in \mathcal{F}_\alpha \right).$$

Is this still true when *I* is uncountable?