Sheet 7

For the exercise class 24.10.2019; please hand in your solutions before 18.10.2019.

We denote by $\mathcal{B}(\mathbb{R}^d)$ the Borel sigma-algebra on \mathbb{R}^d (see *Beispiel 3.13*).

Exercise 1. Let A be a collection of subsets of the space Ω show that the following statements are equivalent:

- (i) A is a Dynkin-system;
- (ii) A satisfies the following properties:
 - $\Omega \in \mathcal{A}$;
 - if $A, B \in \mathcal{A}$ and $A \subset B$, then $B \setminus A \in \mathcal{A}$;
 - For an increasing sequence $(A_n \in \mathcal{A}, n \ge 1)$ with $A_n \subset A_{n+1}$ for every $n \ge 1$, we have $\bigcup_{n>1} A_n \in \mathcal{A}$.

Exercise 2. Give an example of a Dynkin-system, that is not a sigma-algebra.

Exercise 3. Give an example of two probability measures $\mu \neq \nu$ on $\mathcal{F} := \{$ all subsets of $\{1,2,3,4\}\}$, such that for a certain collection of sets $\mathcal{A} \subset \mathcal{F}$ with $\sigma(\mathcal{A}) = \mathcal{F}$ (i.e. the sigma-algebra generated by \mathcal{A} is \mathcal{F}), there is the identity $\mu(A) = \nu(A)$ for every $A \in \mathcal{A}$.

Exercise 4. Prove that, the Borel sigma-algebra on \mathbb{R}^1 is the sigma-algebra generated by any of the following collection (in the sense of *Definition 3.12*):

- (i) all closed subsets of \mathbb{R}^1
- (ii) all compact subsets of \mathbb{R}^1
- (iii) all (a, b) with $a, b \in \mathbb{R}^1$
- (iv) all [a, b] with $a, b \in \mathbb{R}^1$
- (v) all (a, b] with $a, b \in \mathbb{R}^1$
- (vi) all $(-\infty, a]$ with $a \in \mathbb{R}^1$
- (vii) all $(-\infty, a)$ with $a \in \mathbb{R}^1$

Exercise 5 (Regularity of a Borel measure). let μ be any measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and suppose that for every ball with finite radius, say B(x,r) with $x \in \mathbb{R}^d$ and $r \in [0,\infty)$, we have $\mu(B(x,r)) < \infty$. The purpose of this exercise is to prove the following property in a few steps:

For any Borel set $E \in \mathcal{B}(\mathbb{R}^d)$ and any $\epsilon > 0$, there exists $F \subset E \subset O$, with F closed and O open, such that

$$\mu(O \setminus E) < \epsilon$$
 and $\mu(E \setminus F) < \epsilon$.

- (i) Let $F_k \subset \mathbb{R}^d$, $k \geq 1$ be a sequence of closed sets and write $F^* := \bigcup_{k=1}^{\infty} F_k$ (note that F^* is not necessarily closed). Then show that, for any $\epsilon > 0$, there exists a closed set $F \subset F^*$, such that $\mu(F^* \setminus F) < \epsilon$.
- (ii) Define \mathcal{A} to be the collection of all sets $E \in \mathcal{B}(\mathbb{R}^d)$ that satisfies the stated property. Prove that, \mathcal{A} is a sigma-algebra.
- (iii) Conclude that $\mathcal{A} = \mathcal{B}(\mathbb{R}^d)$.

Exercise 6. Let μ, ν be two (positive) measures on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

(i) Suppose that for all $a, b \in \mathbb{R}$ with a < b, the following inequality holds:

$$\mu((a,b)) \le \nu((a,b)).$$

Prove that $\mu(A) \leq \nu(A)$ for every $A \in \mathcal{B}(\mathbb{R})$.

Hint: first consider an open set A and then use the regularity in Exercise 1.

(ii) Suppose that, for every $a \in \mathbb{R}$, the following inequality holds:

$$\mu((-\infty, a)) \le \nu((-\infty, a)).$$

Can we deduce the same conclusion as in (i)?