Maß- und Integrationstheorie HWS 2019

Universität Mannheim Dr. H. Pitters, Dr. Q. Shi

Sheet 6

For the exercise class 17.10.2019; please hand in your solutions before 11.10.2019.

For any space Y, denote by $\mathcal{P}(Y)$ the ensemble of ALL subsets of Y. For a collection of subsets of Y, $\mathcal{A} \subset \mathcal{P}(Y)$, we denote by $\sigma(\mathcal{A})$ the sigma-algebra generated by \mathcal{A} in the sense of *Definition 3.12*.

Exercise 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measured space (*Massraum*). We write

$$\mathcal{N}_{\mu} := \left\{ N \subseteq \Omega \colon \exists B \in \mathcal{F}, \ N \subseteq B \text{ and } \mu(B) = 0 \right\}$$

for the set of μ -negligible (*vernachlässigbar*) subsets of Ω .

(i) We define the completion (*Vervollständigung*) of \mathcal{F} with respect to μ by

$$\mathcal{F}_{\mu} := \left\{ A \subseteq \Omega \colon \exists E, F \in \mathcal{F}, \ E \subseteq A \subseteq F \text{ and } \mu(F \setminus E) = 0 \right\}.$$

Prove that $\mathcal{F}_{\mu} \supseteq \mathcal{F}$ is still a σ -algebra on Ω .

(ii) Show that $\mathcal{F}_{\mu} = \{A \subseteq \Omega : \exists (E, N) \in \mathcal{F} \times \mathcal{N}_{\mu}, A = E \cup N\}.$

Exercise 2. Consider any space Ω and $\mathcal{A} \subset \mathcal{P}(\Omega)$. Prove that, for any $B \in \sigma(\mathcal{A})$, there exists a family $\mathcal{D} \subset \mathcal{A}$ of at most countable cardinality, such that $B \in \sigma(\mathcal{A})$.

Hint: consider $\{B \in \sigma(\mathcal{A}) :$ there exists $\mathcal{D} \subset \mathcal{A}$ at most countable such that $B \in \sigma(\mathcal{D})\}$ and prove that this is a sigma-algebra.

Exercise 3 (True of False?). Prove or disprove (with a counterexample) the following statements:

- (i) Let \mathcal{E} and \mathcal{F} be two sigma-algebras of E. Then the union $\mathcal{E} \cup \mathcal{F}$ is a sigma-algebra.
- (ii) Let \mathcal{F} be a sigma-algebra of Ω and $B \subset \Omega$. Then $\mathcal{F}_B := \{A \cap B \colon A \in \mathcal{F}\}$ is a sigma-algebra of B.
- (iii) Let \mathcal{F} be a sigma-algebra on $X \times Y$ and $\pi \colon X \times Y \to X$ be the canonical projection. Then $\mathcal{F}_X := \{\pi(F) \colon F \in \mathcal{F}\}$ is a sigma-algebra of X.
- (iv) For any $n \in \mathbb{N}$, define a sigma-algebra $\mathcal{F}_n := \sigma(\{1\}, \dots, \{n\})$ on \mathbb{N} . For example, $\mathcal{F}_1 = \{\emptyset, \{1\}, \mathbb{N}, \mathbb{N} \setminus \{1\}\}$. But $\bigcup_{n \ge 1} \mathcal{F}_n$ is NOT a sigma-algebra.
- (v) Let X, Y be two spaces and $f: X \to Y$ a function. Let $\mathcal{A} \subset \mathcal{P}(Y)$. Then $f^{-1}(\sigma(\mathcal{A})) = \sigma(f^{-1}(\mathcal{A}))$.

Exercise 4 (Bonus; whoever solves this exercise during this semester wins a box of chocolate). Prove *Theorem 2.34* in the script: let $\Omega \subset \mathbb{R}^d$ be a **uncountable** set. Suppose that $\mu \colon \mathcal{P}(\Omega) \to [0, \infty)$ satisfies the following properties:

- (i) $\mu(\Omega) < \infty$;
- (ii) $\mu(\{x\}) = 0$ for every $x \in \Omega$;
- (iii) sigma-additivity: i.e., for any disjoint sequence $(A_i \subset \Omega, i \in \mathbb{N})$, we have the identity

$$\mu(\bigcup_{i\geq 1}A_i) = \sum_{i\geq 1}\mu(A_i).$$

Hint: refer to https://en.wikipedia.org/wiki/Measurable_cardinal
and https://eudml.org/doc/212487