Maß- und Integrationstheorie HWS 2019

Universität Mannheim
Dr. H. Pitters, Dr. Q. Shi

Sheet 6

For the exercise class 17.10.2019; please hand in your solutions before 11.10.2019.

For any space Y, denote by $\mathcal{P}(Y)$ the ensemble of ALL subsets of Y. For a collection of subsets of $Y, \mathcal{A} \subset \mathcal{P}(Y)$, we denote by $\sigma(\mathcal{A})$ the sigma-algebra generated by \mathcal{A} in the sense of Definition 3.12.

Exercise 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measured space (Massraum). We write

$$
\mathcal{N}_{\mu}:=\{N \subseteq \Omega: \exists B \in \mathcal{F}, N \subseteq B \text { and } \mu(B)=0\}
$$

for the set of μ-negligible (vernachlässigbar) subsets of Ω.
(i) We define the completion (Vervollständigung) of \mathcal{F} with respect to μ by

$$
\mathcal{F}_{\mu}:=\{A \subseteq \Omega: \exists E, F \in \mathcal{F}, E \subseteq A \subseteq F \text { and } \mu(F \backslash E)=0\}
$$

Prove that $\mathcal{F}_{\mu} \supseteq \mathcal{F}$ is still a σ-algebra on Ω.
(ii) Show that $\mathcal{F}_{\mu}=\left\{A \subseteq \Omega: \exists(E, N) \in \mathcal{F} \times \mathcal{N}_{\mu}, A=E \cup N\right\}$.

Exercise 2. Consider any space Ω and $\mathcal{A} \subset \mathcal{P}(\Omega)$. Prove that, for any $B \in \sigma(\mathcal{A})$, there exists a family $\mathcal{D} \subset \mathcal{A}$ of at most countable cardinality, such that $B \in \sigma(\mathcal{A})$.
Hint: consider $\{B \in \sigma(\mathcal{A})$: there exists $\mathcal{D} \subset \mathcal{A}$ at most countable such that $B \in \sigma(\mathcal{D})\}$ and prove that this is a sigma-algebra.

Exercise 3 (True of False?). Prove or disprove (with a counterexample) the following statements:
(i) Let \mathcal{E} and \mathcal{F} be two sigma-algebras of E. Then the union $\mathcal{E} \cup \mathcal{F}$ is a sigma-algebra.
(ii) Let \mathcal{F} be a sigma-algebra of Ω and $B \subset \Omega$. Then $\mathcal{F}_{B}:=\{A \cap B: A \in \mathcal{F}\}$ is a sigma-algebra of B.
(iii) Let \mathcal{F} be a sigma-algebra on $X \times Y$ and $\pi: X \times Y \rightarrow X$ be the canonical projection. Then $\mathcal{F}_{X}:=\{\pi(F): F \in \mathcal{F}\}$ is a sigma-algebra of X.
(iv) For any $n \in \mathbb{N}$, define a sigma-algebra $\mathcal{F}_{n}:=\sigma(\{1\}, \ldots,\{n\})$ on \mathbb{N}. For example, $\mathcal{F}_{1}=$ $\{\emptyset,\{1\}, \mathbb{N}, \mathbb{N} \backslash\{1\}\}$. But $\bigcup_{n \geq 1} \mathcal{F}_{n}$ is NOT a sigma-algebra.
(v) Let X, Y be two spaces and $f: X \rightarrow Y$ a function. Let $\mathcal{A} \subset \mathcal{P}(Y)$. Then $f^{-1}(\sigma(\mathcal{A}))=$ $\sigma\left(f^{-1}(\mathcal{A})\right)$.

Exercise 4 (Bonus; whoever solves this exercise during this semester wins a box of chocolate). Prove Theorem 2.34 in the script: let $\Omega \subset \mathbb{R}^{d}$ be a uncountable set. Suppose that $\mu: \mathcal{P}(\Omega) \rightarrow[0, \infty)$ satisfies the following properties:
(i) $\mu(\Omega)<\infty$;
(ii) $\mu(\{x\})=0$ for every $x \in \Omega$;
(iii) sigma-additivity: i.e., for any disjoint sequence $\left(A_{i} \subset \Omega, i \in \mathbb{N}\right)$, we have the identity

$$
\mu\left(\bigcup_{i \geq 1} A_{i}\right)=\sum_{i \geq 1} \mu\left(A_{i}\right)
$$

Hint: refer to https://en.wikipedia.org/wiki/Measurable_cardinal and https://eudml.org/doc/212487

