Maß- und Integrationstheorie HWS 2019

Universität Mannheim Dr. H. Pitters, Dr. Q. Shi

Sheet 5

For the exercise class 10.10.2019; please hand in your solutions before 04.10.2019.

Let λ denote the Lebesgue measure on \mathbb{R}^d . We say $A \subset \mathbb{R}^d$ is (Lebesgue)-measurable in the sense of *Definition 2.29*. We denote by \mathfrak{A} the ensemble of Lebesgue-measurable sets in \mathbb{R}^d .

Exercise 1 (Regularity of Lebesgue measure). Let $A \in \mathfrak{A}$ be Lebesgue-measurable. Show that

$$\lambda(A) = \sup_{K \subset A, K \text{ compact}} \lambda(K).$$

Exercise 2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E) > 0$.

- a) Prove that for any $\epsilon > 0$, there exists a bounded open interval J such that $\lambda(E \cap J) \ge (1 \epsilon)\lambda(J)$.
- b) Prove that the difference set of E, which is defined by

$$(E-E) := \{ z \in \mathbb{R} : z = x - y \text{ for some } x, y \in E \},\$$

contains an open interval centered at the origin.

Exercise 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. This function defines a curve $\Gamma \subset \mathbb{R}^2$:

$$\Gamma := \{ (x, y) \in \mathbb{R}^2 \colon x \in \mathbb{R}, y = f(x) \}$$

Show that Γ is Lebesgue-measurable and its Lebesgue measure $\lambda(\Gamma) = 0$.

Exercise 4 (True or false?). Let $A \in \mathfrak{A}$ be Lebesgue-measurable. Prove or disprove (with a counterexample) the following statements:

- (i) If $B \subseteq A$ then $B \in \mathfrak{A}$.
- (ii) If $\lambda(A) = \infty$ then A is an unbounded set.
- (iii) If $\lambda(A) < \infty$ then A is a bounded set.
- (iv) If $\lambda(A) = 0$ then A is a bounded set.
- (v) If A is an open set then $\lambda(A) > 0$.
- (vi) If $\lambda(A \cap (0, 1)) = 1$ then $A \cap (0, 1)$ is dense in (0, 1).
- (vii) If $A \cap (0, 1)$ is dense in (0, 1) then $\lambda(A \cap (0, 1)) > 0$.
- (viii) If $\lambda(A) > 0$ then A has a non-empty interior (*nicht leeres Inneres*).

Exercise 5 (Cardinality of a σ -algebra). Let E be any space and A be a σ -algebra on E. Suppose that A has at most countably many elements. For any $x \in E$, define a subset $B_x \subset E$ by

$$B_x := \bigcap_{A \in \mathcal{A} \colon x \in A} A.$$

- (i) Show that the family $\{B_x, x \in E\}$ yields a partition of E.
- (ii) Prove that, $B_x \in \mathcal{A}$ for any $x \in E$. Then justify that, each element $A \in \mathcal{A}$ can be written as the union of a collection of some B_x 's.
- (iii) Conclude that, E and A both have finite elements; i.e. A cannot have the cardinality of the natural numbers.