Maß- und Integrationstheorie HWS 2019

Universität Mannheim
Dr. H. Pitters, Dr. Q. Shi

Sheet 5

For the exercise class 10.10.2019; please hand in your solutions before 04.10.2019.

Let λ denote the Lebesgue measure on \mathbb{R}^{d}. We say $A \subset \mathbb{R}^{d}$ is (Lebesgue)-measurable in the sense of Definition 2.29. We denote by \mathfrak{A} the ensemble of Lebesgue-measurable sets in \mathbb{R}^{d}.

Exercise 1 (Regularity of Lebesgue measure). Let $A \in \mathfrak{A}$ be Lebesgue-measurable. Show that

$$
\lambda(A)=\sup _{K \subset A, K \text { compact }} \lambda(K) .
$$

Exercise 2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E)>0$.
a) Prove that for any $\epsilon>0$, there exists a bounded open interval J such that $\lambda(E \cap J) \geq(1-$ $\epsilon) \lambda(J)$.
b) Prove that the difference set of E, which is defined by

$$
(E-E):=\{z \in \mathbb{R}: z=x-y \text { for some } x, y \in E\},
$$

contains an open interval centered at the origin.
Exercise 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. This function defines a curve $\Gamma \subset \mathbb{R}^{2}$:

$$
\Gamma:=\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{R}, y=f(x)\right\}
$$

Show that Γ is Lebesgue-measurable and its Lebesgue measure $\lambda(\Gamma)=0$.
Exercise 4 (True or false?). Let $A \in \mathfrak{A}$ be Lebesgue-measurable. Prove or disprove (with a counterexample) the following statements:
(i) If $B \subseteq A$ then $B \in \mathfrak{A}$.
(ii) If $\lambda(A)=\infty$ then A is an unbounded set.
(iii) If $\lambda(A)<\infty$ then A is a bounded set.
(iv) If $\lambda(A)=0$ then A is a bounded set.
(v) If A is an open set then $\lambda(A)>0$.
(vi) If $\lambda(A \cap(0,1))=1$ then $A \cap(0,1)$ is dense in $(0,1)$.
(vii) If $A \cap(0,1)$ is dense in $(0,1)$ then $\lambda(A \cap(0,1))>0$.
(viii) If $\lambda(A)>0$ then A has a non-empty interior (nicht leeres Inneres).

Exercise 5 (Cardinality of a σ-algebra). Let E be any space and \mathcal{A} be a σ-algebra on E. Suppose that \mathcal{A} has at most countably many elements. For any $x \in E$, define a subset $B_{x} \subset E$ by

$$
B_{x}:=\bigcap_{A \in \mathcal{A}: x \in A} A .
$$

(i) Show that the family $\left\{B_{x}, x \in E\right\}$ yields a partition of E.
(ii) Prove that, $B_{x} \in \mathcal{A}$ for any $x \in E$. Then justify that, each element $A \in \mathcal{A}$ can be written as the union of a collection of some B_{x} 's.
(iii) Conclude that, E and \mathcal{A} both have finite elements; i.e. \mathcal{A} cannot have the cardinality of the natural numbers.

