Maß- und Integrationstheorie HWS 2019

Universität Mannheim Dr. H. Pitters, Dr. Q. Shi

Sheet 13

For the exercise class 05.12.2019.

We denote by $\mathcal{B}(\mathbb{R}^d)$ the Borel sigma-algebra on \mathbb{R}^d (see *Beispiel 3.13*). We denote by dx the Lebesgue measure.

a.e. = almost everywhere (*fast überall*)

Exercise 1. Let $f: (\Omega, \mathcal{F}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function. Suppose that μ is sigma-finite. Prove that, for Leb-a.e. $y \in \mathbb{R}$, we have

$$\mu(\{f = y\}) = 0$$
, for Leb-a.e. $y \in \mathbb{R}$.

Exercise 2. Let $f: (\Omega, \mathcal{F}, \mu) \to (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ be a non-negative measurable function. Suppose that μ is sigma-finite.

(i) Let $g: \mathbb{R}_+ \to \mathbb{R}_+$ be a C^1 -function with g(0) = 0. Show that

$$\int_{\Omega} g \circ f d\mu = \int_{0}^{\infty} g'(t) \mu(f \ge t) dt$$

(ii) Show that

$$\int_{\Omega} f d\mu = \int_{0}^{\infty} \mu(f \ge t) dt.$$

(iii) Suppose that μ is a finite measure and there exists $p \ge 1$ and c > 0 such that, for all t > 0,

$$\mu(|f| > t) \le ct^{-p}.$$

Show that, for every $q \in [1, p)$, $\int |f|^q d\mu < \infty$.

Exercise 3. (i) Let t > 0. Show that

$$\int_{(0,t)} \frac{\sin x}{x} \, dx = \int_{(0,\infty)} \left(\int_{(0,t)} e^{-xy} \, \sin x \, dx \right) dy$$

(ii) Deduce that

$$\int_{(0,t)} \frac{\sin x}{x} \, dx = \int_{(0,\infty)} \frac{1 - e^{-ty} \left(y \sin t + \cos t\right)}{1 + y^2} \, dy \tag{1}$$

for all t > 0, and conclude that

$$\lim_{t \to \infty} \int_{(0,t)} \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$
 (2)

(iii) Is the function $x \mapsto \frac{\sin x}{x}$ Lebesgue-integrable on $(0, \infty)$?

Exercise 4 (Riesz–Scheffé lemma). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and $f, f_1, f_2, \ldots \in L^p(\Omega, \mathcal{A}, \mu)$ with $p \in [1, \infty)$. We suppose that, as $n \to \infty$, $f_n(\omega) \to f(\omega)$ for μ -a.e. $\omega \in \Omega$ and that $||f_n||_p \to ||f||_p$. Let $\chi \colon \mathbb{R} \to \{-1, 1\}$ denote a function such that $|x| = \chi(x)x$ for all $x \in \mathbb{R}$, and write $f_n^* := f_n \mathbb{1}_{\{|f_n| \le |f|\}} + \chi(f_n)|f|\mathbb{1}_{\{|f_n| > |f|\}}$ for every $n \in \mathbb{N}$.

- (i) Show that $||f_n^* f||_p \to 0$ as $n \to \infty$.
- (ii) Show that $||f_n f_n^*||_p \to 0$ as $n \to \infty$. Conclude that $f_n \to f$ in $L^p(\Omega, \mathcal{A}, \mu)$. Hint: Use the convexity inequality $(y - x)^p \le y^p - x^p$ for $0 \le x \le y$.