Maß- und Integrationstheorie HWS 2019

Universität Mannheim
Dr. H. Pitters, Dr. Q. Shi

Sheet 12

For the exercise class 28.11.2019.

We denote by $\mathcal{B}\left(\mathbb{R}^{d}\right)$ the Borel sigma-algebra on \mathbb{R}^{d} (see Beispiel 3.13). We denote by $d x$ the Lebesgue measure.
a.e. $=$ almost everywhere (fast überall)

Let ν and μ be two measures on a measurable space (Ω, \mathcal{F}). Then we say
(i) ν is absolutely continuous with respect to μ, denoted by $\nu \ll \mu$, if

$$
\forall A \in \mathcal{F}, \quad \mu(A)=0 \Rightarrow \nu(A)=0 .
$$

(ii) ν and μ are mutually sigular, denoted by $\nu \perp \mu$, if there exists $A \in \mathcal{F}$, such that

$$
\mu(A)=0 \quad \text { and } \quad \nu\left(A^{c}\right)=0 .
$$

Exercise 1. (i) (Radon-Nikodym) Suppose ν and μ are sigma-finite (positive) measures on a measurable space (Ω, \mathcal{F}). Then there exists a unique couple $\left(\nu_{a}, \nu_{s}\right)$ of measures on (Ω, \mathcal{F}), such that

$$
\nu=\nu_{a}+\nu_{s}, \quad \nu_{a} \ll \mu, \quad \nu_{s} \perp \mu .
$$

Moreover, there exists a non-negative measurable function $f \Omega \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
\nu_{a}(A)=\int_{A} f d \mu, \quad \forall A \in \mathcal{F} . \tag{1}
\end{equation*}
$$

(ii) (A counter-example for Radon-Nikodym) Let μ be the counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R})$), i.e. $\mu(A)=\# A$. Show that, the Lebesgue measure λ is absolutely continuous with respect to μ; but there does NOT exist a measurable function such that a relation as in (1) holds.

Exercise 2 (Conditional expectation). Let X be a non-negative measurable (resp. absolutely integrable) function from a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $\mathcal{A} \subset \mathcal{F}$ be a sigma-algebra.
(i) Prove that, there exists a non-negative measurable (resp. absolutely integrable) function Y from the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that

$$
\int_{A} X d \mathbb{P}=\int_{A} Y d \mathbb{P}, \quad \forall A \in \mathcal{A} .
$$

Denote by $\mathbb{E}[X \mid \mathcal{A}]:=Y$, which is called the conditional expectation of X given \mathcal{A}.
(ii) Let X, X^{\prime} be non-negative measurable functions from $(\Omega, \mathcal{F}, \mathbb{P})$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $\alpha, \alpha^{\prime} \in \mathbb{R}$. Show that

$$
\mathbb{E}\left[\alpha X+\alpha^{\prime} X^{\prime} \mid \mathcal{A}\right]=\alpha \mathbb{E}[X \mid \mathcal{A}]+\alpha^{\prime} \mathbb{E}\left[X^{\prime} \mid \mathcal{A}\right] .
$$

(iii) Let X, X^{\prime} be non-negative measurable functions from $(\Omega, \mathcal{F}, \mathbb{P})$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Suppose that X^{\prime} is $(\mathcal{A}, \mathcal{B}(\mathbb{R}))$-measurable, then show that

$$
\mathbb{E}\left[X X^{\prime} \mid \mathcal{A}\right]=X^{\prime} \mathbb{E}[X \mid \mathcal{A}] .
$$

(iv) Let $\mathcal{A}_{1} \subset \mathcal{F}$ and $\mathcal{A}_{2} \subset \mathcal{F}$ be two sigma-algebras. Prove that, \mathcal{A}_{1} and \mathcal{A}_{2} are independent, if and only if

$$
\mathbb{E}\left[\mathbb{1}_{A} \mid \mathcal{A}_{1}\right]=\mathbb{P}(A), \quad \text { for every } A \in \mathcal{A}_{2}
$$

