Maß- und Integrationstheorie HWS 2019

Universität Mannheim Dr. H. Pitters, Dr. Q. Shi

Sheet 11

For the exercise class 21.11.2019.

We denote by $\mathcal{B}(\mathbb{R}^d)$ the Borel sigma-algebra on \mathbb{R}^d (see *Beispiel 3.13*). We denote by dx the Lebesgue measure.

a.e. = almost everywhere (*fast überall*)

- **Exercise 1.** (i) Let f be a differentiable real-valued function on [0, 1] with f' bounded. Show that $\int_{[0,1]} f'(x) dx = f(1) f(0)$.
 - (ii) Find a continuous function $f: [0,1] \to \mathbb{R}$ that is a.e. differentiable with $\int_{[0,1]} f'(x) dx = 0$.

Exercise 2. Let $f: (\Omega, \mathcal{F}, \mu) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ be an integrable function.

- (i) Show that $\lim_{n\to\infty} \int_{\Omega} |f| \mathbb{1}_{\{|f|>n\}} d\mu = 0.$
- (ii) For any $\epsilon > 0$, there exists $\delta > 0$, such that for any $A \in \mathcal{F}$ with $\mu(A) < \delta$, we have $\int_A |f| d\mu < \epsilon$.

Exercise 3 (Integral depending on a parameter). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $(a, b) \subset \mathbb{R}$. For a function $f: \Omega \times (a, b) \to \mathbb{R}$, suppose that for every $u \in (a, b)$, the function $x \mapsto f(x, u)$ is $\mathcal{F}, (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -measurable and μ -integrable. Fix $u_0 \in (a, b)$.

- (i) Suppose that
 - (a) for μ -a.e. $x \in \Omega$, the function $u \mapsto f(x, u)$ is continuous at u_0 ;
 - (b) there exists a non-negative μ -integrable function g, such that $|f(x, u)| \leq g(x) \mu$ -a.e..

Then prove that, the function $F(u) := \int_{\Omega} f(x, u) \mu(dx)$ is continuous at $u_0 \in (a, b)$.

- (ii) Suppose that
 - (a) for μ -a.e. $x \in \Omega$, the function $u \mapsto f(x, u)$ is differentiable at u_0 , with the derivative denoted by $\frac{\partial f}{\partial u}(x, u_0)$;
 - (b) there exists a non-negative μ -integrable function g, such that $|f(x,u) f(x,u_0)| \le g(x)|u u_0| \mu$ -a.e..

Then prove that, the function $F(u) := \int_{\Omega} f(x, u) \mu(dx)$ is differentiable at $u_0 \in (a, b)$ and the derivative is

$$F'(u_0) = \int_{\Omega} \frac{\partial f}{\partial u}(x, u_0) \mu(dx).$$

- (iii) The assumptions in (ii) can be replaced by the followings:
 - (a) for μ -a.e. $x \in \Omega$, the function $u \mapsto f(x, u)$ is differentiable in (a, b), with the derivative denoted by $\frac{\partial f}{\partial u}(x, u)$ for all $u \in (a, b)$;

(b) there exists a non-negative μ -integrable function g, such that for μ -a.e. x,

$$\left|\frac{\partial f}{\partial u}(x,u)\right| \leq g(x), \forall u \in (a,b).$$

Then prove that, the function $F(u) := \int_{\Omega} f(x, u) \mu(dx)$ is differentiable at every $u \in (a, b)$ and the derivative is

$$F'(u) = \int_{\Omega} \frac{\partial f}{\partial u}(x, u) \mu(dx).$$

Exercise 4. Show that,

$$\lim_{n \to \infty} \int_{(0,\infty)} \frac{\sin(t^n)}{t^n(1+t)} dt = \log 2.$$

Exercise 5. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f \colon \Omega \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be an absolutely integrable function.

(i) Prove that, the Fourier transform

$$\hat{f}(u) := \int e^{iux} \mu(dx), \quad u \in \mathbb{R}$$

is continuous on \mathbb{R} .

(ii) Suppose further that

$$\int |xf(x)|\mu(dx) < \infty.$$

Then the Fourier transform is differentiable on \mathbb{R} , and the derivative is

$$\hat{f}'(u) := i \int x e^{iux} f(x) \mu(dx).$$