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Vorab zur Klarstellung

• Alles an klausurrelevantem Sto� an einem Tag durchzukriegen ist unmöglich.

• Wir werden versuchen, so viel Sto� aufzugreifen wie möglich.

• Bi�e denkt nicht, dass nur die heute behandelten Sätze/Def etc. in der Klausur kommen
werden, wir haben die Klausur bisher selbst noch nicht gesehen….

⇒Message: Kein Anspruch auf Vollständigkeit!
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Ablauf heute

• Wir wiederholen Kapitel für Kapitel mit Euch.

• Es wird immer wieder Aufgabenblöcke zwischendurch geben, für deren Bearbeitung Ihr
20-30 Minuten Zeit bekommt.

• Ja, alle Lösungen sind getext und Ja, die Slides werden hochgeladen.

• Heute keine Breakout-Rooms, da ihr es in der Klausur auch alleine hinbekommen müsst,
also testet Euch heute selbst wie gut ihr alles schon verstanden habt!

• Bei Fragen während der Bearbeitung der Aufgaben einfach Mikro anmachen, Hand heben
oder in den Chat schreiben :)
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Kurze Klausurbearbeitungshinweise

• Ihr müsst uneigentliche Integrale z.B. mit MCT “abschneiden“, das heißt es darf NICHT
unendlich an einer Stammfunktion au�auchen.
Alle Sätze/RR, die ihr aus Ana1 kennt sind nämlich nur für stetige Intervalle definiert.

• Wohldefiniertheit zeigt man, indem man von einer Funktion den Positiv- und Negativteil
separat betrachtet. Wenn beide unendlich sind wäre das sehr schlecht, da dann nicht
wohldefiniert…

• Macht Euch deswegen aber nicht verrückt, in (fast) allen Beispielen die Ihr kennt ist der
Integrand nichtnegativ und somit ist das Integral wohldefiniert, weil der Negativteil 0 ist.

⇒ Dann geht´s jetzt los mit Kapitel 1 !
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f-Algebra

Definition
Sei Ω nicht leer. A ⊆ P(Ω) heißt f-Algebra, falls

1. Ω ∈ A,

2. A ∈ A ⇒ AC ∈ A, das nennt man auch stabil (oder abgeschlossen) unter
Komplementbildung,

3. A1,A2, ... ∈ A ⇒
∞⋃

k=1
Ak ∈ A, das nennt man auch stabil (oder abgeschlossen) unter

abzählbarer Vereinigung.

Elemente von A heißen messbare Mengen. Ist A ⊆ B und A,B sind f-Algebren, so nennt
man A Unter-f-Algebra von B.
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Maß

Definition
Für eine f-Algebra A heißt ` : A −→ [0,∞] ein Maß auf A, falls folgende Eigenscha�en
gelten:

1. ` (∅) = 0

2. Sind A1,A2, ... ∈ A paarweise disjunkte Mengen, so gilt ` (
∞Ï

k=1
Ak) =

∞∑
k=1

` (A). Wir nennen

diese Eigenscha� f-Additivität.

Ein Maß ` heißt endlich, falls ` (Ω) < ∞. ` heißt Wahrscheinlichkeitsmaß, falls ` (Ω) = 1.
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Stetigkeit von Maßen

Satz
Sei (Ω,A, `) ein Maßraum und (An)n∈ℕ eine Folge messbarer Mengen, so gelten:

i) Aus An ↑ A (d. h. A1 ⊆ A2 ⊆ A3 ⊆ ...,
⋃∞

n=1 An = A) folgt lim
n→∞

` (An) = ` (A).

ii) Aus ` endlich und An ↓ A (d. h. A1 ⊇ A2 ⊇ ...,
∞⋂

n=1
An = A) folgt lim

n→∞
` (An) = ` (A).
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Erzeugte f-Algebra

Definition
Sei E ⊆ P(Ω), so existiert genau eine f-Algebra A mit

i) E ⊆ A

ii) Ist E ⊆ B und B ist eine f-Algebra, so gilt A ⊆ B.

Dabei bedeutet ii, dass A die kleinste f-Algebra ist, die E enthält.
Für E ⊆ P(Ω) heißt

f (E) =
⋂
E⊆B,
B f-Alg.

B

die von E erzeugte f-Algebra. Ist = f (E), so nennt man E einen Erzeuger von .
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Hauptsatz

Satz
Ist E ⊆ P(Ω) ∩-stabil, so gilt d (E) = f (E).

• Für einen messbaren Raum (Ω,A) und zwei (endliche) Maße `1, `2 ist das insbesondere
wichtig für die Menge

M = {A ∈ A | `1 (A) = `2 (A)}

die ein Dynkin-System ist, falls wir zusätzlich `1 (Ω) = `2 (Ω) fordern.

• Finden wir Gleichheit der Maße auf einem ∩-stabilen Erzeuger von A so wissen wir, dass
Gleichheit auf ganz A gilt.
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Eindeutigkeitssatz

Satz
Es sei (Ω,A) ein messbarer Raum, E ein ∩-stabiler Erzeuger von A und `1, `2 seien Maße auf A.
Zudem gelten:

i) Es gibt eine Folge (En) ⊆ E mit En ↑ Ω, n→∞, und `i (En) < ∞ für alle n ∈ ℕ, i = 1, 2.

ii) `1 (A) = `2 (A) für alle A ∈ E.

Dann gilt `1 = `2, d. h. `1 (A) = `2 (A) für alle A ∈ A.
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Semiring

Definition
S ⊆ P(Ω) heißt Semiring, falls

i) ∅ ∈ S
ii) A,B ∈ S ⇒ A ∩ B ∈ S, also ist S ∩-stabil

iii) A,B ∈ S ⇒ es gibt paarweise disjunkte Mengen C1, ...,Cm ∈ S mit A\B =
mÏ

k=1
Ck .
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Fortsetzungssatz von Carathéodory

Satz
Sei ein Semiring und ` : S → [0,∞] eine Mengenfunktion mit

• ` (∅) = 0,

• ` ist f-additiv (d.h. sind A1,A2, ... ∈ S paarweise disjunkt mit A :=
Ï∞

k=1 Ak ∈ S, so gilt
` (A) = ∑∞

k=1 ` (Ak)).

Dann existiert ein Maß ¯̀ auf f (S) mit ` (A) = ¯̀(A) für alle A ∈ S.
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Existenz und Eindeutigkeit von Maßen

Satz
Ist (Ω,A) ein messbarer Raum, E ein ∩-stabiler Semiring mit f (E) = A. Sei ` : E → [0,∞] mit

• ` (∅) = 0

• ` ist f-additiv

• es gibt Folge eine E1, E2, ... ∈ E mit En ↑ Ω und ` (En) < ∞ für alle n ∈ ℕ.

Dann existiert genau ein Maß ¯̀ auf A = f (E), so dass ¯̀(A) = ` (A) für alle A ∈ E.
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Aufgabenblock 1

a) Sei ` ein Maß und A eine f-Algebra. Zeige, dass für beliebige
A1,A2, ...,An ∈ A

` (
n⋃

k=1

Ak) ≤
n∑

k=1

` (Ak)

gilt.

b) Zeige, dass der Schniit zweier Dynkin-Systeme D1 und D2 wieder ein
Dynkin-System ist.

c) Zeige, dass für beliebiges E ⊆ P(Ω)
d (f (E)) = f (d (E))

gilt.
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Lösung Aufgabenblock 1

a) Per Induktion. Für n = 1 gilt die Behauptung o�ensichtlich.
IA: Sei n = 2. Dann gilt

` (A1 ∪ A2) = ` (A1) + ` (A2) − ` (A1 ∩ A2) ≤ ` (A1) + ` (A2)

IV: Die Behauptung gelte für beliebiges, aber festes n ∈ ℕ
IS: Definiere A := ∪n

k=1Ak . Mit dem gleichem Argument wie für n = 2 folgt

` (A ∪ An+1) ≤ ` (A) + ` (An+1) ≤
n+1∑
k=1

` (Ak)
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Lösung Aufgabenblock 1

b) Definition checken:

i) Da Ω ∈ D1 und Ω ∈ D2 folgt Ω ∈ D1 ∩ D2

ii) Sei A ∈ D1 ∩ D2. Dann muss auch A ∈ D1 und A ∈ D2 gelten. Da D1,D2

Dynkin-Systeme sind, ist Ac ∈ D1 und Ac ∈ D2. Damit ist auch
Ac ∈ D1 ∩ D2

iii) Seien A1,A2, ... ∈ D1 ∩ D2 paarweise disjunkt. Dann sind A1,A2, ... ∈ D1 und
A1,A2, ... ∈ D2. Damit ist auch

⋃
n∈ℕ An ∈ D1 und

⋃
n∈ℕ An ∈ D2. Damit

folgt
⋃

n∈ℕ An ∈ D1 ∩ D2.
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Lösung Aufgabenblock 1

c) Da jede f-Algebra ein Dynkin-Sytem ist, gilt d (f (E)) = f (E). Mit der
Monotonie von d folgt

E ⊆ d (E) ⊆ f (E) .

Mit der Monotonie Eigenscha� und Idempotenz von f folgt dann

f (E) ⊆ f (d (E)) ⊆ f (f (E)) = f (E) .
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Allgemeine Verteilungsfunktionen

Definition
Eine Funktion

F : ℝ→ ℝ, x ↦→ F (x),

welche die Eigenscha�en

i) 0 ≤ F (x) ≤ 1 für alle x ∈ ℝ,

ii) F ist monoton steigend,

iii) F ist rechtsstetig,

iv) lim
x→−∞

F (x) = 0 und lim
x→+∞

F (x) = 1,

erfüllt heißt Verteilungsfunktion.
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Verteilungsfunktionen und Wahrscheinlichkeitsmaße

Satz
Für jede Verteilungsfunktion F gibt es genau ein Wahrscheinlichkeitsmaß ℙF auf B(ℝ) mit
ℙF ((−∞, x]) = F (x).

Definition
Sei ℙ ein Wahrscheinlichkeitsmaß auf (ℝ,B(ℝ)). Dann heißt die Funktion

F : ℝ→ [0, 1], x ↦→ ℙ((−∞, x])

Verteilungsfunktion von ℙ.

• Auf Üb 2 habt ihr gezeigt, dass F aus der Definition eine Verteilungsfunktion ist.

• Jede Verteilungsfunktion korrespondiert also mit genau einem Wahrscheinlichkeitsmaß auf
(ℝ,B(ℝ)).
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Diskrete vs. Stetige Verteilungsfunktionen

Definition

Ist f : ℝ→ [0,∞] integrierbar mit
∫
ℝ

f (x)dx = 1, dann heißt f Dichtefunktion der
Verteilungsfunktion

F (t) =
∫ t

−∞
f (x)dx, t ∈ ℝ

Ist umgekehrt F von obiger Form, so heißt f Dichte von F .
Verteilungsfunktionen mit Dichten nennt man absolutstetig.

Definition

Für a1, . . . , an ∈ ℝ,N ∈ ℕ oder N = ∞ mit p1, · · · , pn ≥ 0 und
∑N

k=1 pk = 1 ist

F (t) =
N∑

k=1

pk1[ak ,∞) (t), t ∈ ℝ

eine Verteilungsfunktion. Die zugehörigen Maße ℙF werden diskrete Verteilungen genannt.
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Juhu

Juhu Kapitel 1 ist schon gescha�t, kurz durchatmen und glücklich sein. :)
Weiter geht´s mit Nummer 2: Abbildungen zwischen messbaren Räumen
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Messbarkeit von Funktionen

Definition
Seien (Ω,A), (Ω′,A ′) messbare Räume und f : Ω → Ω′. Dann heißt f (A −A ′)-messbar, falls

f −1 (A′) ∈ A

für alle A′ ∈ A ′ gilt.

Satz
Ist E ′ ein Erzeuger von A ′ und f : Ω → Ω′. Dann ist die Messbarkeit von f äquivalent zu

A′ ∈ E ′ =⇒ f −1 (A′) ∈ A .

• Der obige Satz ist sehr nützlich um die Messbarkeit von Funktionen nachzuweisen.
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Ein letztes Mal: Erzeuger von B(ℝ) bzw. B(ℝ̄)

Die folgenden Mengensysteme sind zum Beispiel Erzeuger von B(ℝ):

E1 ≔ {(−∞, t) : t ∈ ℝ},
E2 ≔ {(−∞, t] : t ∈ ℝ},
E3 ≔ {(a, b) : a, b ∈ ℝ, a < b},
E4 ≔ {[a, b] : a, b ∈ ℝ, a < b},
E5 ≔ {(t,∞) : t ∈ ℝ},
E6 ≔ {[t,∞) : t ∈ ℝ}.

Mit Satz 2.1.4. müssen wir um die Messbarkeit einer ℝ-wertigen Funktion nachzuweisen, also
nur die Urbilder der Mengen in einem dieser Mengensysteme betrachten.
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f (f )

Definition
Sei f : Ω → Ω′ für einen messbaren Raum (Ω′,A ′). Dann ist

A := {f −1 (A′) : A′ ∈ A ′}

eine f-Algebra und A ist die kleinste f-Algebra auf Ω, für die f (A,A ′)-messbar ist. Wir
nennen die f-Algebra auch f (f ).
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Bildmaß oder push-forward

Definition
Sei f : (Ω,A) → (Ω′,A ′) messbar und ` ein Maß auf A. Dann ist

`f (B) := ` (f −1 (B)),B ∈ A ′

ein Maß auf A ′. Dieses Maß heist Bildmaß oder push-forward.

• Wir nutzen also die Messbarkeit der Abbildung f , um ein Maß ` auf A auf ein Maß `f auf
A ′ rüberzuschieben.

• Wer sich an die Definition der Verteilung von Zufallsvariablen erinnert, hat jetzt ho�entlich
nochmal den AHA-E�ekt bekommen.
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Messbare numerische Funktionen

Definition

Für einen messbaren Raum (Ω,A) heißt f : Ω → ℝ̄ messbare numerische Funktion, falls
f (A,B(ℝ̄))-messbar ist.

Satz

Sind f , g : Ω → ℝ̄ Funktionen von einem messbaren Raum (Ω,A) nach (ℝ,B(ℝ̄)), so sind die
Mengen bzw. Funktionen

{f < g}, {f ≤ g}, {f = g}, {f ≠ g}
f + g, U · f fürU ∈ ℝ, f · g, f ∧ g, f ∨ g, |f |

alle messbar.
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Folgen messbarer numerischer Funktionen

Satz

Ist außerdem (fn)n∈ℕ eine Folge messbarer numerischer Funktionen mit fn : Ω → ℝ̄ für alle n ∈ ℕ.
Dann sind die für l ∈ Ω punktweise definierten Funktionen

g1 (l) ≔ inf
n∈ℕ

fn (l), g2 (l) ≔ sup
n∈ℕ

fn (l),

g3 (l) ≔ lim inf
n∈ℕ

fn (l), g4 (l) ≔ lim sup
n∈ℕ

fn (l),

messbar. Falls für jedes l ∈ Ω der Grenzwert

g(l) ≔ lim
n→∞

fn (l)

in ℝ̄ existiert, ist auch g eine messbare numerische Funktion .

⇒Message: Gefühlt alles ist messbar!
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Aufgabenblock 2

a) Zeige: Jede stetige Abbidung ist (B(ℝ̄),B(ℝ̄))-messbar.

b) Zeige: Ist h : Ω → Ω′ (A,A′)-messbar und k : Ω′→ Ω′′ (A′,A′′)-messbar,
so ist k ◦ h : Ω → Ω′′ (A,A′′)-messbar.

c) Zeige: Sind f , g : Ω → ℝ̄ (A,B(ℝ̄)-messbar, so ist {f < g} messbar.
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Lösung Aufgabenblock 2

a) Mit Proposition 2.1.4 reicht es, die Messbarkeit auf einem Erzeuger
nachzuweisen. Wir wählen B(ℝ) = f ({O : O ⊆ ℝ o�en }). Nun ist die
Definition der Stetigkeit nach Ana 1 aber äquivalent zu Urbilder o�ener
Mengen sind o�en. Damit ist die Aussage gezeigt.

b) Weil k (A′,A′′)-messbar ist, gilt k−1(A′′) ∈ A′∀A′′ ∈ A′′.
Weil h (A,A′)-messbar ist, gilt h−1(B) ∈ A∀B ∈ A′.
Also folgt ∀A′′ ∈ A′′

(k ◦ h)−1(A′′) = h−1(k−1(A′′)) ∈ A

und somit die Behauptung.
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Lösung Aufgabenblock 2

c)
{f < g} =

⋃
t∈ℚ
{f < t < g} =

⋃
t∈ℚ
{f < t} ∩ {t < g}.

Die erste Gleichheit gilt, da ℚ dicht in ℝ liegt.
Die Behauptung folgt, da ℚ abzählbar ist und f , g messbar nach
Voraussetzung, also ist die rechte Seite in A und damit auch die Linke.
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Die Gebetsmühle der Integrationstheorie

• Wir leiten zuerst das Lebesgue-Integral für einfache Funktionen her.

• Für nichtnegative, messbare Funktionen führen wir das Lebesgue-Integral über die
Supremumsdarstellung ein.

• Nützlich: Durch den Satz der monotonen Konvergenz einfacher Funktionen können wir das
Integral einer nichtnegativen, messbaren Funktion f auch als Grenzwert einer Folge von
Integralen von fn ∈ E+ schreiben, sofern fn ↑ f gilt.

• Über die Zerlegung f = f + − f − kommen wir dann im letzten Schri� zum Lebesgue-Integral
für numerische, messbare Funktionen.

31



Das Lebesgue-Integral: Einfache Funktionen

Sei (Ω,A, `) ein Maßraum und E ≔ {f : f einfache Funktion} bzw.
E+ ≔ {f : f einfache positive Funktion}. Hierbei heißt eine Funktion einfach, falls U1, . . . , Un ∈ ℝ̄

und A1, . . . ,An existieren, sodass die Ak paarweise disjunkt sind mit
⋃n

k=1 Ak = Ω und

f (l) =
n∑

k=1

Uk1Ak (l), ∀l ∈ Ω.

Für ein f ∈ E+ ist dann das Lebesgue-Integral definiert durch∫
Ω

f d` ≔

n∑
k=1

Uk` (Ak).
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Das Lebesgue-Integral: Nichtnegative, messbare Funktionen

Für eine nichtnegative, messbare Funktion f : (Ω,A) → (ℝ̄,B(ℝ̄)) definieren wir dann (etwas
unhandlich, dafür aber direkt wohldefiniert) das Lebesgue-Integral durch∫

Ω
f d` ≔ sup

{∫
Ω

g d` : g einfach, 0 ≤ g ≤ f
}
.

Der folgende Satz vereinfacht weitere Beweise durch eine äquivalente Schreibweise.

Satz (Monotone Konvergenz für einfache Funktionen)
Sei (fn) ⊆ E+ mit fn ↑ f , n→∞, für eine nichtnegative messbare numerische Funktion f . Dann gilt

lim
n→∞

∫
Ω

fn d` =

∫
Ω

f d`,

wobei in der Gleichheit +∞ = +∞ möglich ist.

Dies ist besonders nützlich, da nach 3.1.6 für jede für eine nichtnegative messbare numerische
Funktion eine solche Folge in E+ existiert.
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Das Lebesgue-Integral: Integrierbare Funktionen

Sei f : (Ω,A) → (ℝ̄,B(ℝ̄)) eine messbare numerische Funktion. Dann sind nach der Vorlesung
f + ≔ max{f , 0}, f − ≔ −min{f , 0} messbare und nichtnegative Funktionen. Falls∫

Ω
f + d` < ∞,

∫
Ω

f − d` < ∞,

gilt, heißt f integrierbar und das Lebesgue-Integral für eine integrierbare Funktion f ist definiert
durch∫

Ω
f d` ≔

∫
Ω

f + d` −
∫
Ω

f − d`.

Wir schränken uns hierbei auf integrierbare Funktionen ein, um den Fall “∞−∞“ zu vermeiden.
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Transformationssatz

Satz (Abstrakter Transformationssatz)

Seien (Ω,A), (Ω′,A ′) messbare Räume, ` ein Maß auf A, f : Ω → Ω′ messbar, g : Ω′→ ℝ

messbar. Dann ist g `f -integrierbar genau dann, wenn g ◦ f `-integrierbar ist. Ist eine dieser
Aussagen erfüllt, so gilt ebenfalls die Transformationsformel∫

Ω′
gd`f =

∫
Ω

g ◦ f d`.
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Konvergenzsätze

Satz (Monotone Konvergenz Theorem (MCT))

Seien f , f1, f2, ... : Ω → ℝ messbar und es gelte 0 ≤ f1 ≤ f2 ≤ ... ≤ f sowie f = lim
n→∞

fn `-f.ü. Dann

gilt

lim
n→∞

∫
Ω

fn d` =

∫
Ω

f d`,

+∞ = +∞ ist dabei möglich.

Satz (Dominierte Konvergenz Theorem (DCT))

Seien f , f1, f2, ... : Ω → ℝ messbar. Gilt lim
n→∞

fn = f `-fast überall und |fn | ≤ g `-fast überall für alle

n ∈ ℕ, für eine beliebige `-integrierbare nichtnegative messbare numerische Funktion g.
Dann sind f , f1, f2, ... `-integrierbar und

lim
n→∞

∫
Ω

fn d` =

∫
Ω

f d`.

Die Funktion g spielt keine große Rolle (sie muss nur existieren) und wird Majorante für die Folge
(fn) genannt.
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Integralabschätzungen

Satz (Hölder-Ungleichung)

Seien p, q > 1 mit 1
p +

1
q = 1. Dann gilt∫

Ω
|fg |d` ≤

( ∫
Ω
|f |pd`

) 1
p
( ∫

Ω
|g |qd`

) 1
q
.

Satz (Minkowski-Ungleichung)
Sei p ≥ 1, so gilt (∫

Ω
|f + g |pd`

)1/p
≤

(∫
Ω
|f |pd`

)1/p
+

(∫
Ω
|g |pd`

)1/p
.

Beide Seiten können den Wert +∞ annehmen.
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Produktmaße und Fubini

Satz (Existenz des Produktmaßes)
Sind `1, `2 f-endliche Maße auf A1,A2, so existiert ein eindeutiges Produktmaß `1 ⊗ `2 auf
A1 ⊗ A2 mit

`1 ⊗ `2 (A1 × A2) = `1 (A1) · `2 (A2)

für alle Mengen A1 ∈ A1,A2 ∈ A2.

Satz (Satz von Fubini)

Seien (Ω1,A1, `1), (Ω2,A2, `2) f-endliche Maßräume und f : Ω1 × Ω2 → ℝ sei
(A1 ⊗ A2,B(ℝ))-messbar. Dann gilt (u.a.)∫

Ω1×Ω2

f d`1 ⊗ `2 =

∫
Ω1

( ∫
Ω2

fl1 (l2)d`2 (l2)
)
d`1 (l1)

=

∫
Ω2

( ∫
Ω1

fl2 (l1)d`1 (l1)
)
d`2 (l2)

38



Produktmaße und Fubini
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Aufgabenblock 3

a) Sei f : ℝ→ ℝ, x ↦→ (−x2 + c)1[−1,1] (x). Finde eine Folge von einfachen
Funktionen fn für die fn ↑ f gilt. Berechne

∫ 1
−1 fnd_ und dann

∫ 1
−1 f d_

b) Sei X eine nichtnegative Zufallsvariable auf (Ω,A) mit X ∼ F . Zeige, dass∫ ∞

0
(1 − F (t))dt = E[X ]

gilt. Hinweis: Es gilt ℙ(X ≤ t) = F (t) und ℙ(A) = E[1A] für A ∈ A.
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Lösung Aufgabenblock 3

a) Wir wählen die Darstellung (eine von vielen möglichen)

fn : ℝ→ ℝ, x ↦→ 10(x) +
2n∑

k=1

1[ −k
2n ,
−(k−1)

2n )∪( k−1
2n , k

2n ] (x) · (−
( k
2n

)2
+ 1)

Es gilt fn ∈ E+ für alle n ∈ ℕ und fn ↑ f .∫
ℝ

fn d_ = _({0}) +
2n∑

k=1

_( [−k
2n ,
−(k − 1)

2n ) ∪ ( k − 1
2n ,

k
2n ]) · (−

( k
2n

)2
+ 1)

=

2n∑
k=1

2
2n (−

( k
2n

)2
+ 1)
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Lösung Aufgabenblock 3

=

2n∑
k=1

2
2n (−

( k
2n

)2
+ 1)

=

2n∑
k=1

−2k2

23n +
2n∑

k=1

2
2n

=
−2
23n

2n∑
k=1

k2 + 2

=
−2
23n

2n(2n − 1) (2 · 2n − 2)
6

+ 2

=
−2
23n

2n(2n − 1) (2 · 2n − 2)
6

+ 2
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lim
n→∞

∫
ℝ

fn d_ = lim
n→∞

−2
23n

2n(2n − 1) (2 · 2n − 2)
6

+ 2

= lim
n→∞

−2
23n

2 · 23n − 6 · 22n + 2 · 2n

6
+ 2

= −2 · 2
6
+ 2 =

−4
6
+ 2 =

4
3

=

∫
ℝ

f d_
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b) ∫ ∞

0
(1 − F (t))dt =

∫ ∞

0
(1 − ℙ(X ≤ t))dt

=

∫ ∞

0
ℙ(X > t)dt

=

∫ ∞

0
E[1[t,∞) (X )]dt

=

∫ ∞

0

∫
Ω

1[t,∞) (X (l)) dℙ dt

=

∫ ∞

0

∫
Ω

1[0,X (l)) (t) dℙ dt

=

∫
Ω

∫ ∞

0
1[0,X (l)) (t) dt dℙ

= E[
∫ X

0
1 dt] = E[X ]

.
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Bleibt noch zu zeigen, dass wir Fubini benutzen können. Dafür müssen wir
zeigen, dass die Abbildung

(l, t) ↦→ 1[0,X (l)) (t)

A ⊗ B(ℝ)-messbar ist. Für Indikatorfunktionen reicht es aus die Messbarkeit
der Indikatormenge zu zeigen. Dafür verweisen wir auf die Lösung von Aufgabe
1 auf Übungsbla� 10.
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Mi�agspause

Puuh jetzt haben wir uns alle mal eine Pause verdient.
Später kommt dann noch Kapitel 4, bis dahin: Guten Hunger ;)
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Zufallsvariablen

Definition
Sei (Ω,A,ℙ) ein Wahrscheinlichkeitsraum. Dann heißt eine A − B(ℝ)-messbare Abbildung

X : Ω → ℝ, l ↦→ X (l),

Zufallsvariable.

• Eine Zufallsvariable X ordnet also jedem Elementarereignis l einen Wert/eine Auszahlung
in ℝ zu.

• Wenn f : (ℝ,B(ℝ)) → (ℝ,B(ℝ)) messbar ist, ist auch f (X ) eine Zufallsvariable, da die
Verke�ung messbarer Abbildungen messbar ist.

• X muss A − B(ℝ)-messbar sein, damit wir die Wahrscheinlichkeit, dass X Werte in einer
Menge B ∈ B(ℝ) annimmt, bestimmen können. Verteilung
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Verteilungen von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann heißt

ℙX (B) ≔ ℙ(X ∈ B) Not.= ℙ({l ∈ Ω : X (l) ∈ B}) = ℙ(X−1 (B)), B ∈ B(ℝ),

Verteilung von X .

• Hier wird die Messbarkeit von X wichtig, da wir dadurch wissen, dass X−1 (B) ∈ A für alle
B ∈ B(ℝ) gilt und somit ℙX (B) für alle B ∈ B(ℝ) wohldefiniert ist.

• ℙX ist der push-forward (das Bildmaß) von X .

• Nach der Vorlesung ist ℙX ein Wahrscheinlichkeitsmaß auf (ℝ,B(ℝ)).
 Verteilungsfunktionen und Erwartungswerte
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Verteilungsfunktionen von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann heißt

FX : ℝ→ [0, 1], t ↦→ FX (t) ≔ ℙ(X ≤ t) = ℙX ((−∞, t]),

Verteilungsfunktion von X .

• Eine Zufallsvariable heißt absolutstetig mit Dichte f, wenn die Verteilungsfunktion FX (t)
von X die Dichte f hat.

• Eine Zufallsvariable heißt diskret,wenn FX (t) eine diskrete Verteilungsfunktion ist.
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Wichtige Rechenobjekte

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,ℙ). So heißen, falls die
Integrale wohldefiniert sind:

E[X ] ≔
∫
Ω

X (l) dℙ(l) Erwartungswert von X ,

E[X k] ≔
∫
Ω

X k (l) dℙ(l) ktes Moment von X ,

V [X ] ≔ E[(X − E[X ])2] Varianz von X ,

E[e_X ] ≔
∫
Ω
e_X (l) dℙ(l) exponentielles Moment von X .
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Anwendung des Trafos um rechnen zu können

Satz (Transformationssatz)

Seien (Ω,A), (Ω′,A ′) messbare Räume, ` ein Maß auf (Ω,A), f : Ω → Ω′ und g : Ω′→ ℝ̄.
Dann ist g `f -integrierbar genau dann, wenn g ◦ f `-integrierbar ist, und falls eine dieser
Eigenscha�en erfüllt ist gilt ∫

Ω
g ◦ f d` =

∫
Ω′

g d`f .

Also gilt für eine Zufallsvariable X und eine messbare Funktion g : ℝ→ ℝ

E[g(X )] ≔
∫
Ω

g(X (l)) dℙ(l) =
∫
ℝ

g(x) dℙX (x),

wenn g ◦ X ℙ-integrierbar oder f ℙX -integrierbar ist.
Es reicht also aus die Verteilung der Zufallsvariablen X zu kennen!
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Beispiele

E[X ] =
∫
ℝ

x dℙX (x),

V [X ] = E[(X − E[X ])2] =
∫
ℝ

(x − E[X ])2 dℙX (x),

E[etX ] =
∫
ℝ

etx dℙX (x),

falls die Integrale existieren.

• ℙX ist (Danke Trafo!) ein W-Maß auf (ℝ,B(ℝ)), das heißt wir können jetzt wieder die
üblichen Berechnungsregeln definieren, falls ℙX eine Dichte hat oder eine Summe von
Dirac-Maßen ist. (siehe nächste Slide)
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Berechnungsregeln

Satz

Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,ℙ) und g : ℝ→ ℝ̄ messbar,
so gelten:

i) Ist X absolutstetig mit Dichte f , so gilt

E[g(X )] =
∫
ℝ

g(x)f (x)dx

ii) Ist X diskret und nimmt die Werte a1, ..., aN ∈ ℝ mit Wahrscheinlichkeiten p1, ..., pN an, so gilt

E[g(X )] =
N∑

k=1

g(ak)pk
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Rechenregeln für den Erwartungswert

Satz
Seien X ,Y Zufallsvariablen auf (Ω,A,ℙ) mit E[|X |],E[|Y |] < ∞ und U, V ∈ ℝ, so gelten:

i) E[UX + VY ] = UE[X ] + VE[Y ]
ii) X ≥ 0ℙf .s.⇒ E[X ] ≥ 0und X ≥ Y ℙf .s.⇒ E[X ] ≥ E[Y ]

iii) Ist X = U ℙ − f .s., d.h.ℙ(X = U) = 1, so ist E[X ] = U

iv) ℙ(X ∈ A) = E[1A (X )], insbesondere gilt FX (t) = E[1(−∞,t ] (X )], t ∈ ℝ
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Momenterzeugende Funktion von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann heißt

MX : D ↦→ [0,∞), t ↦→ MX (t) ≔ E[etX ]

momenterzeugende Funktion von X , wobei

D ≔ {t ∈ ℝ : E[etX ] < ∞}.

• Es gilt immer D ≠ ∅, daMX (0) = E[e0X ] = E[1] = 1 < ∞.
• Falls ein n > 0 existiert, mit (−n, n) ⊆ D, so gilt nach der Vorlesung

E[X k] =M (k)
X (0)

wobeiM (k)
X (0) die k−te Ableitung an der Stelle 0 ist.

 Deshalb momenterzeugende Funktion.
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Markov- und Tschebyche�ungleichung

Satz (Markov- und Tschebyche�ungleichung)
Sei X eine Zufallsvariable, dann gelten für a > 0 folgende Ungleichungen

i) Für h : ℝ→ (0,∞) wachsend gilt

ℙ(X ≥ a) ≤ E[h(X )]
h(a) (Markovungleichung)

ii) Für h : [0,∞) → (0,∞) wachsend gilt

ℙ( |X | ≥ a) ≤ E[h( |X |)]
h(a) (Markovungleichung)

iii)

ℙ( |X − E[X ] | ≥ a) ≤ V [X ]
a2 (Tschebyche�ungleichung)
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Aufgabenblock 4

Sei (Ω,A,ℙ) ein Wahrscheinlichkeitsraum auf dem die Zufallsvariablen

X ∼ Poi(_) Y ∼ Bin(n, p) Z ∼ U([0, 1])

mit _ > 0, p ∈ [0, 1], n ∈ ℕ gegeben seien.

a) Berechne den Erwartungswert der Zufallsvariable aX 2 + b , a, b ∈ ℝ.

b) Berechne die momenterzeugende Funktion und die Varianz von Y .

c) Berechne die Dichtefunktion der Zufallsvariable −Z .
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Lösung Aufgabenblock 4

a) Da X ∼ Poi(_) gilt pk = e−_ _
k

k! . Wir berechnen zunächst das zweite Moment
von X mithilfe von Indexverschiebungen und Linearität:

E[X 2] =
∞∑

k=0

k2 · e−_ _
k

k!

=

∞∑
k=1

k · e−_ _k

(k − 1)!

=

∞∑
k=0

(k + 1) · e−_ _
(k+1)

k!

= _

∞∑
k=0

k · e−_ _
k

k!
+ _

∞∑
k=0

e−_
_k

k!
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Lösung Aufgabenblock 4

= _E[X ] + _
∞∑

k=0

pk

= _2 + _,

wobei E[X ] = _ gerne nochmal gecheckt werden darf wer uns nicht glaubt.
Also gilt für a, b ∈ ℝ mit Linearität des Erwartungswerts:

E[aX 2 + b] = a · E[X 2] + b = a · (_2 + _) + b.
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Lösung Aufgabenblock 4

b) Da Y ∼ Bin(n, p) gilt, dassMY (t) ∀t ∈ ℝ definiert ist, da Y nur Masse auf
{0, . . . , n} hat.
Durch den Binomischen Lehrsatz und da für Y ∼ Bin(n, p)
pk =

(n
k

)
pk (1 − p)n−k , erhalten wir:

MY (t) = E[etY ] =
n∑

k=0

etk
(
n
k

)
pk (1 − p)n−k

=

n∑
k=0

(
n
k

)
(pet)k (1 − p)n−k

= (pet + (1 − p))n.
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Lösung Aufgabenblock 4

Mit dem Satz aus der Vorlesung gilt nun E[Y k] =M (k)Y (0).
Zweimaliges Ableiten der Momenterzeugenden Funktion gibt:

M (1)Y (t) = n(pet + (1 − p))n−1 · pet

M (2)Y (t) = (n − 1)n(pet + (1 − p))n−2 · pet · pet + n(pet + (1 − p))n−1 · pet

Ausgewertet an der Stelle t = 0 gibt:

E[Y ] =M (1)Y (0) = n(1)n−1 · p = np

E[Y 2] =M (2)Y (0) = (n − 1)n(1)n−2 · p2 + np

= n2p2 − np2 + np

AlsoV (Y ) = E[Y 2] − (E[Y ])2 = np − np2 = np(1 − p) .
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Lösung Aufgabenblock 4
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Lösung Aufgabenblock 4

c) Sei t ∈ ℝ. Dann gilt da Z ∼ U([0, 1])

ℙ(−Z ≤ t) =
∫ t

−∞
1[0,1] (−z)dz

Da 0 ≤ −z ≤ 1⇔ 0 ≥ z ≥ −1 gilt

ℙ(−Z ≤ t) =
∫ t

−∞
1[0,1] (−z)dz =

∫ t

−∞
1[−1,0] (z)dz

Damit gilt −Z ∼ U([−1, 0]) mit Dichte f (z) = 1[−1,0] (z).
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Zufallsvektoren

Definition
Sei (Ω,A,ℙ) ein Wahrscheinlichkeitsraum. Eine Abbildung

X : Ω → ℝd , l ↦→ X (l) =

©­­­­­«
X1 (l)
X2 (l)

...

Xd (l)

ª®®®®®¬
,

heißt Zufallsvektor, falls sie A-B(ℝd )-messbar ist.

• X ist genau dann ein Zufallsvektor, wenn alle Xi : Ω → ℝ Zufallsvariablen sind, also wenn
sie A-B(ℝ)-messbar sind.
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Verteilungen von Zufallsvektoren

Definition
Das Maß

ℙX (B) ≔ ℙ(X−1 (B)), B ∈ B(ℝd ),

auf (ℝd ,B(ℝd )) heißt Verteilung des Zufallsvektors X .

• Um die Verteilung der Zufallsvariablen Xi, i ∈ {1, . . . , d}, zu berechnen nutzen wir folgende
Gleichung

ℙ(Xi ∈ B) = ℙ(X1 ∈ ℝ, X2 ∈ ℝ, . . . , Xi ∈ B, . . . , Xd ∈ ℝ) = ℙX (ℝ×. . .×B×. . .×ℝ), B ∈ B(ℝ),

man nennt ℙXi dann auch eindimensionale Randverteilung von Xi .
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Gemeinsame Dichten von Zufallsvariablen

Definition
Seien X1, ..., Xd Zufallsvariablen auf (Ω, ,ℙ).

i) X1, ..., Xd haben die gemeinsame Dichte f , falls die gemeinsame Verteilungsfunktion F
absolutstetig ist und Dichte f hat.

ii) X1, ..., Xd heißen diskret, falls a1, ..., aN ∈ ℝd existieren mit

ℙ(X = ak) = ℙ(X1 = ak,1, ..., Xd = ak,d ) = pk

und
∑N

k=1 pk = 1 für ein N ∈ ℕ ∪ {+∞}.
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Gemeinsame Dichten

Satz
Seien X1, ..., Xd Zufallsvariablen auf (Ω,A,ℙ).

(i) Haben X1, ..., Xd die gemeinsame Dichte f , so haben X1, ..., Xd Dichten f1, ..., fd und es gilt

fi (x) =
∫ ∞

−∞
...

∫ ∞

−∞︸        ︷︷        ︸
(d−1)-viele

f (x1, ..., xd )︸       ︷︷       ︸
xi fest

x1...xd︸︷︷︸
ohne xi

, x ∈ ℝ,

ist eine Dichte von Xi für i = 1, ..., d. In Worten: Ist X absolutstetig, so sind alle Xi absolutstetig
und die Dichten der Xi entstehen durch Ausintegrieren aller anderen Variablen.

(ii) Die Rückrichtung gilt im Allgemeinen nicht. Es gibt also absolutstetige Zufallsvariablen, die
keine gemeinsame Dichte haben.
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Unabhängige Zufallsvariablen

Definition
Seien X1, ..., Xd Zufallsvariablen auf (Ω, ,ℙ).

i) X1, ..., Xd heißen unabhängig, falls die gemeinsame Verteilungsfunktion in die
Randverteilungsfunktionen faktorisiert, d. h.

FX (t1, ..., td ) = FX1 (t1) · ... · FXd (td ), ti ∈ ℝ

oder mit Wahrscheinlichkeiten geschrieben

ℙ(X1 ≤ t1, ..., Xd ≤ td ) = ℙ(X1 ≤ t1) · ... · ℙ(Xd ≤ td ), ti ∈ ℝ.

ii) X1, ..., Xd heißen abhängig, falls sie nicht unabhängig sind.

iii) X1, ..., Xd heißen unabhängig und identisch verteilt (u.i.v.), falls sie unabhängig und
identisch verteilt (FX1 = ... = FXd ) sind. Weil die gemeinsame Verteilungsfunktion F bei u.i.v.
Zufallsvariablen schon eindeutig durch jede Randverteilungsfunktion festgelegt ist, gibt
man o� nur die Verteilung von X1 an. 66



Gemeinsame Dichten und Unabhängigkeit

Satz
Sind X1, ..., Xd Zufallsvariablen mit gemeinsamer Dichte f , dann gilt:

X1, ..., Xd sind unabhängig ⇔ f (x) = f1 (x1) · ... · fd (xd ) Lebesgue-fast überall,

wobei f1, ..., fd Dichten von X1, ..., Xd sind.
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Rechenregeln mit gemeinsamen Dichten

Satz
Sind X1, ..., Xd Zufallsvariablen auf (Ω, ,ℙ), so gelten:

i) Für A ∈ B(ℝd ) gilt E[1A (X )] = ℙ(X ∈ A).
ii) Haben X1, ..., Xd eine gemeinsame Dichte f , so gilt

E[g(X1, ..., Xd )] =
∫
ℝd

g(x1, ..., xd )f (x1, ..., xd ) (x1, ..., xd ).

iii) Sind X1, ..., Xd diskret und nimmt der Zufallsvektor X = (X1, ..., Xd ) die Vektoren a1, ..., aN ∈ ℝd

mit Wahrscheinlichkeiten p1, ..., pN an, so gilt

E[g(X1, ..., Xd )] =
N∑

k=1

pkg(ak) =
N∑

k=1

ℙ(X = ak)g(ak).

Wie für d = 1 gilt in (ii) und (iii), dass die Erwartungswerte wohldefiniert sind (oder existieren),
genau dann, wenn die Integrale bzw. Summen wohldefiniert (oder endlich) sind.
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Rechenregeln für unabhängige Zufallsvariablen I

Satz
Sind X1, ..., Xd unabhängige Zufallsvariablen auf (Ω, ,ℙ), so gilt

E[g1 (X1) · ... · gd (Xd )] = E[g1 (X1)] · ... · E[gd (Xd )]

für alle messbaren g1, ..., gd : ℝ→ ℝ. Insbesondere gilt auch

ℙ(X1 ∈ A1, ..., Xd ∈ Ad ) = E[1A1 (X1)] · ... · E[1Ad (Xd )] = ℙ(X1 ∈ A1) · ... · ℙ(Xd ∈ Ad )

für alle A1, ...,Ad ∈ B(ℝ).
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Rechenregeln für unabhängige Zufallsvariablen II

Satz
Sind X1, ..., Xd Zufallsvariablen auf (Ω, ,ℙ), so gelten:

i) Für A ∈ B(ℝd ) gilt E[1A (X )] = ℙ(X ∈ A).
ii) Haben X1, ..., Xd eine gemeinsame Dichte f , so gilt

E[g(X1, ..., Xd )] =
∫
ℝd

g(x1, ..., xd )f (x1, ..., xd ) (x1, ..., xd ).

iii) Sind X1, ..., Xd diskret und nimmt der Zufallsvektor X = (X1, ..., Xd ) die Vektoren a1, ..., aN ∈ ℝd

mit Wahrscheinlichkeiten p1, ..., pN an, so gilt

E[g(X1, ..., Xd )] =
N∑

k=1

pkg(ak) =
N∑

k=1

ℙ(X = ak)g(ak).

Wie für d = 1 gilt in (ii) und (iii), dass die Erwartungswerte wohldefiniert sind (oder existieren),
genau dann, wenn die Integrale bzw. Summen wohldefiniert (oder endlich) sind.
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Faltung diskreter und stetiger Verteilungen

Für diskrete Verteilungen braucht man die Faltung eigentlich überhaupt nicht! Seien X1, X2

unabhängige, diskrete Zufallsvariablen. Dann gilt

ℙ(X1 + X2 = a) =
∑

b∈X2 (Ω)
ℙ(X1 = a − b)ℙ(X2 = b).

Für Summen unabhängiger stetiger Zufallsvariablen braucht man hingegen die Faltung. Diese
liefert dann eine Regel für die Dichte der Zufallsvariable X1 + X2, wenn X1, X2 unabhängige,

stetige Zufallsvariablen, denn nach der Vorlesung gilt für diese

fX+Y (x) =
∫
ℝ

fX (x − y)fY (y) dy .
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Aufgabenblock 5

a) Seien X ∼ Poi(_), Y ∼ Poi(V) mit _, V > 0 unabhängige Zufallsvariablen. Zeige, dass
X + Y ∼ Poi(_ + V) gilt.

b) Seien X ,Y unabhängige Zufallsvariablen mitMX < ∞,MY (t) < ∞ für ein t ∈ ℝ. Zeige,
dassMX+Y (t) =MX (t) · MY (t) gilt.
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Lösung Aufgabenblock 5

a) Mit der diskreten Faltungsformel

ℙ(X + Y = n) =
∑
k∈ℕ0

ℙ(X = n − k) · ℙ(Y = k)

=

n∑
k=0

ℙ(X = n − k) · ℙ(Y = k)

=

n∑
k=0

e−_
_ (n−k)

(n − k)! · e
−V V

k

k!

= e−_ · e−V
n∑

k=0

_ (n−k)

(n − k)! ·
Vk

k!

= e−(_+V)
n∑

k=0

_ (n−k)

(n − k)! ·
Vk

k!
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Lösung Aufgabenblock 5

e−(_+V)
n∑

k=0

_ (n−k)

(n − k)! ·
Vk

k!
= e−(_+V)

n!

n!

n∑
k=0

_ (n−k)

(n − k)! ·
Vk

k!

= e−(_+V)
1
n!

n∑
k=0

n!

(n − k)!k!
_ (n−k) · Vk

= e−(_+V)
1
n!

n∑
k=0

(
n
k

)
_ (n−k) · Vk

= e−(_+V)
(_ + V)n

n!

Also gilt ℙ(X +Y = n) = ℙ(Z = n) für Z ∼ Poi(_ + V) für alle n ∈ ℕ und damit X +Y ∼ Poi(_ + V).
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Lösung Aufgabenblock 5

b) Da die Erwartungswerte unabhängiger Zufallsvariablen faktorisieren gilt für alle t ∈ ℝ

MX+Y (t) = E[et (X+Y ) ] = E[etX · etY ] = E[etX ]E[etY ] =MX (t) · MY (t)
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (Xn)n∈ℕ eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann konvergiert (Xn)n∈ℕ (ℙ)-fast sicher gegen X , falls

ℙ
(

lim
n→∞

Xn = X
)
= ℙ

({
l ∈ Ω : lim

n→∞
Xn (l) = X (l)

})
= 1

gilt. Man schreibt

Xn
f.s.−→

n→∞
X .

• Die fast sichere Konvergenz von Zufallsvariablen ist dazu äquivalent, dass eine
ℙ-Nullmenge N ∈ A existiert, sodass für alle l ∈ NC

lim
n→∞

Xn (l) = X (l)

gilt.
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (Xn)n∈ℕ eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Ω,A,ℙ) mit E[|X |p] < ∞,E[|Xn |p] < ∞,∀n ∈ ℕ, für ein p ≥ 1 .
Dann konvergiert (Xn)n∈ℕ im p-ten Mi�el (oder in Lp) gegen X , falls

lim
n→∞

E[|Xn − X |p] = 0

gilt. Man schreibt

Xn
Lp

−→
n→∞

X .

• Ihr kennt die Lp-Konvergenz schon aus dem Kapitel zu Lp-Räumen, nur wird sie hierbei
explizit auf Zufallsvariablen angewendet (denkt daran Erwartungswerte sind Integrale!).
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (Xn)n∈ℕ eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann konvergiert (Xn)n∈ℕ stochastisch (oder in
Wahrscheinlichkeit) gegen X , falls für alle n > 0

lim
n→∞

ℙ( |Xn − X | > n) = 0

gilt. Man schreibt

Xn
P−→

n→∞
X .

• Man folgert stochastische Konvergenz häufig direkt aus der Konvergenz im p-ten Mi�el mit
der Markov-Ungleichung (oder Spezialfall Chebyshev-Ungleichung).
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (Xn)n∈ℕ eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Ω,A,ℙ). Dann konvergiert (Xn)n∈ℕ in Verteilung gegen X , falls für
alle stetigen, beschränkten, reell-wertigen Funktionen f (oder kurz ∀f ∈ Cb (ℝ))

lim
n→∞

E[f (Xn)] = E[f (X )]

gilt. Man schreibt

Xn
(d)
−→
n→∞

X .

• Die Konvergenz in Verteilung ist die schwächste (hier behandelte) Art der Konvergenz von
Zufallsvariablen.
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Bildchen (Konvergenzdiagramm)
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Schwaches GGZ

Satz

i) Klassische Variante: Sind X1, X2, . . . u.i.v. mit E[X 2
1 ] < ∞, so gilt

1
n

n∑
k=1

Xk
(P)
−→
n→∞

E[X1] .

ii) Variante mit schwächeren Annahmen: Sind X1, X2, . . . paarweise unkorreliert mit identischem
Erwartungswert und

1
n2

n∑
k=1

V(Xk) −→
n→∞

0,

so gilt
1
n

n∑
k=1

Xk
(P)
−→
n→∞

E[X1] .
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Starkes GGZ

Satz
Sind X1, X2, . . . u.i.v. mit E[|X1 |] < ∞, so gilt

1
n

n∑
i=1

Xi
f .s.
−→
n→∞

E[X1] .

• Teil (i) im schwachen GGZ wurde nur aus didaktischen Gründen behandelt, denn diese
Aussage folgt direkt aus dem starken Gesetz der großen Zahlen.

• Teil (ii) im schwachen GGZ ist deutlich interessanter, denn unter diesen Annahmen muss
das starke GGZ nicht gelten!
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Starkes GGZ

Satz
Sind X1, X2, . . . u.i.v. mit E[|X1 |] < ∞, so gilt

1
n

n∑
i=1

Xi
f .s.
−→
n→∞

E[X1] .

• Teil (i) im schwachen GGZ wurde nur aus didaktischen Gründen behandelt, denn diese
Aussage folgt direkt aus dem starken Gesetz der großen Zahlen.

• Teil (ii) im schwachen GGZ ist deutlich interessanter, denn unter diesen Annahmen muss
das starke GGZ nicht gelten!
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Aufgabenblock 6

a) Sei (Ω,A,ℙ) ein WRaum auf dem die Folgen von Zufallsvariablen
(Xn)n∈ℕ, (Yn)n∈ℕ und eine Zufallsvariable Z gegeben seien mit

Xn ∼ Exp(n), E[Yn] =
1
√

n
, V [Yn] =

f2

n
,

für f > 0. Zeige Xn
P−→

n→∞
0 und Yn + Z

P−→
n→∞

Z .

b) Seien X1, X2, . . . paarweise unkorreliert mit identischem Erwartungswert und
gelte V(Xk) ≤ c ∀k ∈ ℕ , c > 0.
Zeige oder Widerlege: Das schwache GGZ gilt immer noch!

c) Zeige: Seien X1, X2, . . . u.i.v., so gilt für A ∈ B(ℝ)
1
n

#{i ≤ n : Xi ∈ A}
f .s.
−→
n→∞

ℙ(X1 ∈ A).
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Lösung Aufgabenblock 6

a) Sei n > 0. Dann gilt für n ∈ ℕ
ℙ( |Xn − 0| > n) = ℙ(Xn > n)

= 1 − ℙ(Xn ≤ n)
= 1 − FXn (n)
= 1 − (1 − e−nn)
= e−nn,

und somit folgt
lim

n→∞
ℙ( |Xn − 0| > n) = 0,

für alle n > 0, also per Definition

Xn
P−→

n→∞
0
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Lösung Aufgabenblock 6

Sei n > 0. Dann gilt für n ∈ ℕ mit der Markov-Ungleichung und der
Verschiebungsformel

ℙ( |Z + Yn − Z | > n) = ℙ( |Yn | > n)

≤ E[|Yn |2]
n2

=
V (Yn) + E[Yn]2

n2

=
f2 + 1

nn2

und somit folgt lim
n→∞

ℙ( |Z + Yn − Z | > n) = 0, also per Definition

Z + Yn
P−→

n→∞
Z
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Lösung Aufgabenblock 6

b) Sei n > 0 beliebig.
O.B.d.A sei E[X1] der Erwartungswert aller Xk , sodass
E[ 1n

∑n
k=1 Xk − E[X1]] = 0, k = {1, . . . , n}.

Wie im Beweis des Schwachen GGZ machen wir erst Tschebychef, dann
Bienaymé:

ℙ( | 1
n

n∑
k=1

Xk − E[X1] | ≥ n) = ℙ( |
n∑

k=1

(Xk − E[X1]) | ≥ nn)

≤
V(∑n

k=1 Xk − E[X1])
n2n2

=
V(∑n

k=1 Xk)
n2n2
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Lösung Aufgabenblock 6

=

∑n
k=1V(Xk)

n2n2

≤
∑n

k=1 c

n2n2 =
c

nn2 → 0, n→∞,

wobei wir im letzten Schri� die Voraussetzung angewandt haben.
Wir sehen also: Auch unter der Annahme, dass die Varianzen lediglich

beschränkt sind, gilt das schwache GGZ noch!
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Lösung Aufgabenblock 6

c) Für i ∈ ℕ definieren wir
Yi ≔ 1A(Xi)

Die Yi sind u.i.v nach Korollar 4.2.28 und es gilt

E[Y1] = E[1A(X1)] = ℙ(X1 ∈ A) ≤ 1 < ∞

Also kann das starke Gesetz der großen Zahlen angewandt werden und es
gilt

1
n

#{i ≤ n : Xi ∈ A} = 1
n

n∑
i=1

Yi
f .s.
−→
n→∞

E[Y1] = ℙ(X1 ∈ A).

Die gezeigte Aussage heißt übrigens Empirisches Gesetz der großen Zahlen.
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Danke und Viel Erfolg!

• Juhu, Wir haben´s gescha�t für heute!

• Wir ho�en, Ihr konntet etwas von heute und der Übung generell mitnehmen und ha�et so
wie wir auch Spaß dran:)

• Ganz viel Erfolg für die Klausur am Freitag! Daumen für Euch alle sind gedrückt!

Eure Übungskeks Leo und Martin! (Wer wima-memes abonniert hat versteht´s)
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