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Vorab zur Klarstellung

« Alles an klausurrelevantem Stoff an einem Tag durchzukriegen ist unmoglich.
« Wir werden versuchen, so viel Stoff aufzugreifen wie moglich.
« Bitte denkt nicht, dass nur die heute behandelten Satze/Def etc. in der Klausur kommen

werden, wir haben die Klausur bisher selbst noch nicht gesehen....

= Message: Kein Anspruch auf Vollstandigkeit!



Ablauf heute

« Wir wiederholen Kapitel fiir Kapitel mit Euch.

« Es wird immer wieder Aufgabenblocke zwischendurch geben, fiir deren Bearbeitung lhr
20-30 Minuten Zeit bekommt.
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« Ja, alle Losungen sind getext und Ja, die Slides werden hochgeladen.
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20-30 Minuten Zeit bekommt.
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« Heute keine Breakout-Rooms, da ihr es in der Klausur auch alleine hinbekommen miisst,
also testet Euch heute selbst wie gut ihr alles schon verstanden habt!



Ablauf heute

« Wir wiederholen Kapitel fiir Kapitel mit Euch.

« Es wird immer wieder Aufgabenblocke zwischendurch geben, fiir deren Bearbeitung lhr
20-30 Minuten Zeit bekommt.

« Ja, alle Losungen sind getext und Ja, die Slides werden hochgeladen.

« Heute keine Breakout-Rooms, da ihr es in der Klausur auch alleine hinbekommen miisst,
also testet Euch heute selbst wie gut ihr alles schon verstanden habt!

« Bei Fragen wahrend der Bearbeitung der Aufgaben einfach Mikro anmachen, Hand heben
oder in den Chat schreiben :)



Kurze Klausurbearbeitungshinweise

« lhr misst uneigentliche Integrale z.B. mit MCT “abschneiden®, das heifit es darf NICHT
unendlich an einer Stammfunktion auftauchen.

Alle Satze/RR, die ihr aus Ana1 kennt sind namlich nur fiir stetige Intervalle definiert.
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« Wobhldefiniertheit zeigt man, indem man von einer Funktion den Positiv- und Negativteil
separat betrachtet. Wenn beide unendlich sind ware das sehr schlecht, da dann nicht
wohldefiniert...

« Macht Euch deswegen aber nicht verriickt, in (fast) allen Beispielen die Ihr kennt ist der
Integrand nichtnegativ und somit ist das Integral wohldefiniert, weil der Negativteil 0 ist.



Kurze Klausurbearbeitungshinweise

« lhr misst uneigentliche Integrale z.B. mit MCT “abschneiden®, das heifit es darf NICHT
unendlich an einer Stammfunktion auftauchen.

Alle Satze/RR, die ihr aus Ana1 kennt sind namlich nur fiir stetige Intervalle definiert.

« Wobhldefiniertheit zeigt man, indem man von einer Funktion den Positiv- und Negativteil
separat betrachtet. Wenn beide unendlich sind ware das sehr schlecht, da dann nicht
wohldefiniert...

« Macht Euch deswegen aber nicht verriickt, in (fast) allen Beispielen die Ihr kennt ist der
Integrand nichtnegativ und somit ist das Integral wohldefiniert, weil der Negativteil 0 ist.

= Dann geht s jetzt los mit Kapitel 1!



o-Algebra

Definition
Sei Q nicht leer. A € P(Q) heifit o-Algebra, falls
1. Qe A,
2. Ae A = A€ € A, das nennt man auch stabil (oder abgeschlossen) unter

Komplementbildung,

3. A, Ay ... € A = | Ar € A, das nennt man auch stabil (oder abgeschlossen) unter
k=1
abzahlbarer Vereinigung.
Elemente von A heiflen messbare Mengen. Ist A C B und A, B sind o-Algebren, so nennt

man A Unter-o-Algebra von 8.



Definition
Fur eine o-Algebra A heifdt p: A —> [0, 0] ein Maf3 auf A, falls folgende Eigenschaften
gelten:

1. p(0)=0
2. Sind Ay, Ay, ... € A paarweise disjunkte Mengen, so gilt u( () Ax) = 2, p(A). Wir nennen
k=1

k=1
diese Eigenschaft o-Additivitat.

Ein Maf} u heifit endlich, falls p(Q) < co. i heifit Wahrscheinlichkeitsmaf3, falls p(Q) = 1.



Stetigkeit von Maf3en

Satz
Sei (Q, A, ) ein Mafsraum und (A,)nen eine Folge messbarer Mengen, so gelten:

i) Aus A, TA( h.Ai C Ay C A3 C ..., Ul An = A) folgt lim p(A,) = p(A).

ii) Aus p endlichund A, | A(d h.A1 2 A 2 ..., ﬁ An = A) folgt lim pu(A,) = u(A).
n=1 n—oo



Erzeugte o-Algebra

Definition

Sei & C P(Q), so existiert genau eine o-Algebra A mit
i) ECA

ii) Ist & C B und B ist eine g-Algebra, so gilt A C B.

Dabei bedeutet ii, dass A die kleinste o-Algebra ist, die & enthalt.
Fur & € P(Q) heifit
o€ = (8

5CB,
B o-Alg.

die von & erzeugte o-Algebra. Ist = 0(&), so nennt man & einen Erzeuger von .



Hauptsatz

Satz
Ist & € P(Q) N-stabil, so gilt d(E) = o(E).



Hauptsatz

Satz
Ist & € P(Q) N-stabil, so gilt d(E) = o(E).

« Fur einen messbaren Raum (Q, A) und zwei (endliche) Mafle 4, i, ist das insbesondere
wichtig fur die Menge
M={AeA| (A = m(A)}
die ein Dynkin-System ist, falls wir zusatzlich p1(Q) = u(Q) fordern.
« Finden wir Gleichheit der Maf3e auf einem N-stabilen Erzeuger von A so wissen wir, dass
Gleichheit auf ganz A gilt.



Eindeutigkeitssatz

Satz

Es sei (Q, A) ein messbarer Raum, & ein N-stabiler Erzeuger von A und iy, pip seien MafSe auf A.
Zudem gelten:

i) Es gibt eine Folge (E;) € & mit E, T Q, n — oo, und p1;(E,) < oo fiirallene N, i=1,2.
i) p1(A) = ua(A) fiiralle A € &.

Dann gilt py = pp, d. h. p1(A) = 12 (A) fiir alle A € A.



Definition
S € P(Q) heifit Semiring, falls
i)0eS
ii) ABeS = AN Be S, also ist S N-stabil

iii) A B € S = es gibt paarweise disjunkte Mengen Cy, ..., C,, € S mit A\B = () Cy.
k=1



Fortsetzungssatz von Carathéodory

Satz

Sei ein Semiring und pi: S — [0, ] eine Mengenfunktion mit

- pu(0) =0,
 pist o-additiv (d.h. sind Ay, A, ... € S paarweise disjunkt mit A := Ui; Ak € S, so gilt
H(A) = 232, p(Ar)).

Dann existiert ein Maf3 ji auf o(S) mit u(A) = fi(A) fiiralle A € S.



Existenz und Eindeutigkeit von Maf3en

Satz
Ist (Q, A) ein messbarer Raum, & ein N-stabiler Semiring mit 0(&) = A. Sei ji: & — [0, 0] mit
< (@) =0

 p ist o-additiv
« es gibt Folge eine E1, E,, ... € & mit E, T Q und p(E,) < oo fiir alle n € N.

Dann existiert genau ein Maf} i auf A = o(&), so dass [i(A) = p(A) fiiralle A € E.



Aufgabenblock 1

a) Sei p ein Mafd und A eine o-Algebra. Zeige, dass fiir beliebige

AL Ay LA EA
u( Ao < 3 mAn
k=1 k=1
gilt.
b) Zeige, dass der Schniit zweier Dynkin-Systeme 9, und D, wieder ein
Dynkin-System ist.
c) Zeige, dass fiir beliebiges & C P(Q)
d(c(&)) =0o(d(E))
gilt.



L6sung Aufgabenblock 1

a) Per Induktion. Fiir n = 1 gilt die Behauptung offensichtlich.
IA: Sei n = 2. Dann gilt

H(ATU A) = p(Aq) + p(A) — (A1 N Ay) < pu(Aq) + p(Ay)

IV: Die Behauptung gelte fir beliebiges, aber festes n € N
IS: Definiere A := U}_ A. Mit dem gleichem Argument wie fiir n = 2 folgt

n+1

H(AU Anp) < p(A) + p(An1) < ) p(AY)
k=1



L6sung Aufgabenblock 1

b) Definition checken:

i) DaQ € D;und Q € D, folgt Q € DN D,
i) Sei A€ DN D,. Dann muss auch A € D und A € D, gelten. Da D4, D,
Dynkin-Systeme sind, ist A € D; und A® € D,. Damit ist auch
A e D1ND,
iii) Seien Aq, Ay, ... € D1 N D, paarweise disjunkt. Dann sind Ay, Ay, ... € D7 und
A1, Ag, ... € Dy, Damit ist auch (J ey An € D1 und U, eny An € D5. Damit
folgt U en An € D1 N Dy



L6sung Aufgabenblock 1

c) Da jede o-Algebra ein Dynkin-Sytem ist, gilt d(c(E)) = o(&E). Mit der
Monotonie von d folgt

ECd(&) Ca(E).

Mit der Monotonie Eigenschaft und ldempotenz von o folgt dann

o(&E) Co(d(E)) Ca(a(E)) =0(E).



Allgemeine Verteilungsfunktionen

Definition
Eine Funktion
F:R->R, x> F(x),

welche die Eigenschaften

i) 0 < F(x) < 1furalle x € R,
ii) F ist monoton steigend,
iii) F ist rechtsstetig,

iv) lim F(x)=0und lim F(x) =1,
X—>—00 X—>+00

erfullt heifit



Verteilungsfunktionen und Wahrscheinlichkeitsmafle

Satz

Fiir jede Verteilungsfunktion F gibt es genau ein Wahrscheinlichkeitsmaf3 Pr auf B(R) mit
Pr((=c0,x]) = F(x).

Definition

Sei P ein Wahrscheinlichkeitsmafy auf (R, 8(R)). Dann heifit die Funktion

F: R —[0,1], xt P((—o0,x])

« Auf Ub 2 habt ihr gezeigt, dass F aus der Definition eine Verteilungsfunktion ist.

« Jede Verteilungsfunktion korrespondiert also mit genau einem Wahrscheinlichkeitsmafd auf
(R,B(R)).



Diskrete vs. Stetige Verteilungsfunktionen

Definition
Ist f: R — [0, o] integrierbar mit fRf(x)dx = 1, dann heift f der
Verteilungsfunktion

F(t)z/tf(x)dx,teR

Ist umgekehrt F von obiger Form, so heifit f von F.

Verteilungsfunktionen mit Dichten nennt man
Definition
Fir ay,...,a, € R, N € Noder N = co mit p1,---, p, > 0 und ZkN=1Pk= 1ist

N

F(D) = pilljgue0 (), t € R
k=1

eine Verteilungsfunktion. Die zugehorigen Mafle Pr werden genannt.

20



Juhu Kapitel 1 ist schon geschafft, kurz durchatmen und gliicklich sein. :)
Weiter geht “s mit Nummer 2: Abbildungen zwischen messbaren Raumen

21



Messbarkeit von Funktionen

Definition
Seien (Q, A), (Q’, A’) messbare Raume und f: Q — Q’. Dann heif}t f , falls

f(A)eqA

fur alle A” € A’ gilt.

22



Messbarkeit von Funktionen

Definition
Seien (Q, A), (Q’, A’) messbare Raume und f: Q — Q’. Dann heif}t f , falls

ffl(A)eA
fur alle A” € A’ gilt.

Satz
Ist & ein Erzeuger von A’ und f: Q — Q. Dann ist die Messbarkeit von f dquivalent zu

Aef& = fI(A)eA.

« Der obige Satz ist sehr niitzlich um die Messbarkeit von Funktionen nachzuweisen.
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Ein letztes Mal: Erzeuger von B(R) bzw. 8(R)

Die folgenden Mengensysteme sind zum Beispiel Erzeuger von S([R):

E1:={(-00,t) : t € R},

Ey ={(—o0,t] : t € R},
E3:={(ab):abecR, a< b},
Es={lab]:abeR, a< b}
Es = {(t,0) : t € R},

Eg = {[t,0) : t € R}.

Mit Satz 2.1.4. miissen wir um die Messbarkeit einer R-wertigen Funktion nachzuweisen, also

nur die Urbilder der Mengen in einem dieser Mengensysteme betrachten.

23



Definition
Sei f: Q — Q' fuir einen messbaren Raum (Q’, A’). Dann ist

A={A):AcA}

eine o-Algebra und A ist die kleinste o-Algebra auf Q, fur die f (A, A’)-messbar ist. Wir

nennen die o-Algebra auch

24



Bildmaf3 oder push-forward

Definition
Sei f: (QA) — (Q', A’) messbar und p ein Maf} auf A. Dann ist

pr(B) = p(f~'(B)), Be A’

ein Maf} auf A’. Dieses Maf} heist oder

+ Wir nutzen also die Messbarkeit der Abbildung f, um ein Maf3 y auf A auf ein Maf} yr auf
A’ ruberzuschieben.

« Wer sich an die Definition der Verteilung von Zufallsvariablen erinnert, hat jetzt hoffentlich
nochmal den AHA-Effekt bekommen.

25



Messbare numerische Funktionen

Definition
Fiir einen messbaren Raum (Q, A) heifit f : Q — R , falls
f(A, B(R))-messbar ist.

Satz

Sind f, g : Q@ — R Funktionen von einem messbaren Raum (Q, A) nach (R, B(R)), so sind die
Mengen bzw. Funktionen

f<ghif<gh{if=gh{if#g
frga ffirmeR,f-gfAgfVelfl

alle messbar.

26



Folgen messbarer numerischer Funktionen

Satz

Ist auflerdem (fn)nen eine Folge messbarer numerischer Funktionen mit f,,: Q — R fiir alle n € N.
Dann sind die fiir € Q punktweise definierten Funktionen

g1(w) = inf fi(®), g(w) = sup fo(w),
neN neN
S(w) =liminf f(0), gi(w) = limsup fy(w),
neN neN
messbar. Falls fiir jedes » € Q der Grenzwert
g() = lim f,(o)
in R existiert, ist auch g eine messbare numerische Funktion .

= Message: Gefiihlt alles ist messbar!

27



Aufgabenblock 2

a) Zeige: Jede stetige Abbidung ist (B(R), B(R))-messbar.
b) Zeige: Ist h: Q — Q' (A, A’)-messbar und k : Q" — Q" (A’, A”)-messbar,
soistkoh: Q — Q" (A, A”)-messbar.

c) Zeige: Sind f,g: Q — R (A, B(R)-messbar, so ist {f < g} messbar.

28



L6sung Aufgabenblock 2

a) Mit Proposition 2.1.4 reicht es, die Messbarkeit auf einem Erzeuger
nachzuweisen. Wir wahlen B(R) = ¢({O : O C R offen }). Nun ist die
Definition der Stetigkeit nach Ana 1 aber dquivalent zu Urbilder offener
Mengen sind offen. Damit ist die Aussage gezeigt.

b) Weil k (A’, A”)-messbar ist, gilt k" 1(A”) € A'VA” € A".

Weil h (A, A’)-messbar ist, gilt h™'(B) € AVB € A’.
Also folgt YA” € A”

(ko h)™'(A") = h™'(k”'(A")) e A

und somit die Behauptung.

29



L6sung Aufgabenblock 2

Feg={JUr<t<g={Jr<nnir<g

teQ teQ
Die erste Gleichheit gilt, da Q dicht in R liegt.
Die Behauptung folgt, da Q abzéhlbar ist und f, g messbar nach
Voraussetzung, also ist die rechte Seite in A und damit auch die Linke.

30



Die Gebetsmiihle der Integrationstheorie

Wir leiten zuerst das Lebesgue-Integral fiir einfache Funktionen her.

Fir nichtnegative, messbare Funktionen fithren wir das Lebesgue-Integral tiber die
Supremumsdarstellung ein.

Nitzlich: Durch den Satz der monotonen Konvergenz einfacher Funktionen kdnnen wir das
Integral einer nichtnegativen, messbaren Funktion f auch als Grenzwert einer Folge von
Integralen von f,, € &* schreiben, sofern f, T f gilt.

Uber die Zerlegung f = f* — f~ kommen wir dann im letzten Schritt zum Lebesgue-Integral
fur numerische, messbare Funktionen.

31



Das Lebesgue-Integral: Einfache Funktionen

Sei (Q, A, i) ein Malraum und & = {f : f einfache Funktion} bzw.
&* := {f : f einfache positive Funktion}. Hierbei heifit eine Funktion einfach, falls o, ..., a, € R

und Ay, ..., A, existieren, sodass die Ay paarweise disjunkt sind mit UZ:1 A =Qund

flw) = Z arla (w), VYo € Q.

k=1

Fiir ein f € &* ist dann das Lebesgue-Integral definiert durch

/fdﬂ = Zn: akp(Ak).
© k=1

32



Das Lebesgue-Integral: Nichtnegative, messbare Funktionen

Fiir eine f:(Q A — (R, B(R)) definieren wir dann (etwas
unhandlich, dafiir aber direkt wohldefiniert) das durch

/fdp::sup{/gdy:geinfach,OsgSf}.
Q Q

Der folgende Satz vereinfacht weitere Beweise durch eine dquivalente Schreibweise.

Satz (Monotone Konvergenz fiir einfache Funktionen)

Sei (fn) € E" mit f,, T f, n — oo, fiir eine nichtnegative messbare numerische Funktion f. Dann gilt

lim /f,,dy=/fd/1,
n—oo Q Q

wobei in der Gleichheit +co = +co méglich ist.

Dies ist besonders nutzlich, da nach 3.1.6 fir jede fiir eine nichtnegative messbare numerische

Funktion eine solche Folge in &* existiert.
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Das Lebesgue-Integral: Integrierbare Funktionen

Sei f: (Q,A) — (R, B(R)) eine messbare numerische Funktion. Dann sind nach der Vorlesung
[t =max{f,0},f = —min{f, 0} messbare und nichtnegative Funktionen. Falls

/f+dp<oo, /f_dy<oo,
Q Q

gilt, heifit f integrierbar und das Lebesgue-Integral fiir eine integrierbare Funktion f ist definiert
durch

[ran=[ra-[ra

Wir schranken uns hierbei auf integrierbare Funktionen ein, um den Fall “co — oo zu vermeiden.

34



Transformationssatz

Satz (Abstrakter Transformationssatz)

Seien (Q, A), (Q’, A") messbare Riume, yi ein Maf3 auf A, f: Q — Q' messhar, g: Q" — R
messbar. Dann ist g ji¢-integrierbar genau dann, wenn g o f ji-integrierbar ist. Ist eine dieser
Aussagen erfiillt, so gilt ebenfalls die Transformationsformel

/gduf=/g°fdu-
Q’ Q
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Konvergenzsitze

Satz (Monotone Konvergenz Theorem (MCT))
Seien f, fi, fo, ... Q — R messbar und es gelte 0 < f; < fo < ... < f sowie f = lim f, u-f.ii. Dann
n—oo

gilt
lim /fn dyi = /fdﬂ,

+00 = +oo0 ist dabei méglich.
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Konvergenzsitze

Satz (Monotone Konvergenz Theorem (MCT))
Seien f, fi, fo, ... Q — R messbar und es gelte 0 < f; < fo < ... < f sowie f = lim f, u-f.ii. Dann
n—oo

gilt
tim [ foau= [ e

Satz (Dominierte Konvergenz Theorem (DCT))
Seien f, fi, for ... Q — R messbar. Gilt lim f, = f pu-fast iiberall Ifal < g p-fast iiberall fiir alle

n € N, fiir eine beliebige i-integrierbare nichtnegative messbare numerische Funktion g.
Dann sind f, f1, fo, ... pi-integrierbar und

tim [ fuda= [ s

Die Funktion g spielt keine grofie Rolle (sie muss nur existieren) und wird Majorante fiir die Folge

(fn) genannt. 36

+00 = +oo0 ist dabei méglich.



Integralabschitzungen

Satz (Holder-Ungleichung)

Seien p,q > 1 mitﬂlj + % = 1. Dann gilt

[ v < ( [ Pdu)* ( i l7du)".
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Integralabschitzungen

Satz (Holder-Ungleichung)

Seien p,q > 1 mit% + 1q = 1. Dann gilt

[ v < ( [ Pdu)* ( i l7du)".

Satz (Minkowski-Ungleichung)

|/ |f+g|"du)1/ps |/ Ifl”du)1/p+( / |g|Pdu)1/p.

Beide Seiten kénnen den Wert +co annehmen.

Sei p > 1, so gilt
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Produktmafle und Fubini

Satz (Existenz des Produktmafles)
Sind i1, 1o o-endliche Mafe auf A4, Ay, so existiert ein eindeutiges Produktmaf3 11 ® pp auf
Ay ® Ay mit

H1 ® (A1 X Ap) = p (A1) - pa(Az)

fiir alle Mengen A, € Ay, Ay € A,.

38



Produktmafle und Fubini

Satz (Existenz des Produktmafles)

Sind i1, 1o o-endliche Mafe auf A4, Ay, so existiert ein eindeutiges Produktmaf3 11 ® pp auf
A ® Ay mit

H1 ® (A1 X Az) = i (Ar) - p2(Az)
fiir alle Mengen A, € Ay, Ay € A,.
Satz (Satz von Fubini)

Seien (Qq, Ay, 1), (Qo, Aa, p1p) o-endliche Mafrdume und f: Q1 X Qp — R sei
(A, ® Ay, B(R))-messbar. Dann gilt (u.a.)

s = [ ([ fon(onditon)dn(on

- /Q | /Q Fonlodgn (09t

Q1xQ,
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Aufgabenblock 3

a) Sei f: R = R, x — (—=x*+ ¢)1{_11(x). Finde eine Folge von einfachen

Funktionen f, fiir die f, T f gilt. Berechne f_]1fnd/1 und dann f_11fd/1

b) Sei X eine nichtnegative Zufallsvariable auf (Q, A) mit X ~ F. Zeige, dass

/00(1 — F(t))dt = E[X]
0

gilt. Hinweis: Es gilt P(X < t) = F(t) und P(A) = E[14] fiir A € A.

39



L6sung Aufgabenblock 3

a) Wir wiahlen die Darstellung (eine von vielen moglichen)

2n

fa: [R—>[er—>10(x)+21[k SN (x) - (= (kn)z‘”)

Es gilt f, € & furallene Nund f, T f.

[ o= A<{0}>+ZA< D L (A

n
2

- 3(—(5)2“)

21 2n
=

40



L6sung Aufgabenblock 3

2[7

Saettron
z —2l<2 22

:23nZk2+2

—22"2”—1 2:2"-2
2@ -n@r-y
g 6
-22"(2"-1)(2-2"-2
2@ -N@-2-2)
230 6
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lim

n—o0

|5

-22"2"-1)(2-2" -2
2@ -N@ -2

dA = lim
N—00 23n 6
—3 Do D — e G 5
= |lIm — + 2
n—oo 23n 6
2 —4

=-2--4+2=—+2=
6

6
:Afﬁ

3
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b)

/mm — F(t))dt = /wm ~P(X < t)dt
(0] (0]

:/ P(X > t)dt
0
:,/0 [E[]{t’oo)(X)]dl’

:/ /1“,00)()((@)) dP dt

0 Q

:/ /1[0,)((“))(0 dP dt
0 Q

_ / / Tox(y (1) dt dP
QJO

:[E[/Ox1dt]:[E[X]
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Bleibt noch zu zeigen, dass wir Fubini benutzen kdnnen. Dafiir miissen wir

zeigen, dass die Abbildung
(@, t) = Tox(w)) (1)

A ® B(R)-messbar ist. Fiir Indikatorfunktionen reicht es aus die Messbarkeit
der Indikatormenge zu zeigen. Dafiir verweisen wir auf die Losung von Aufgabe

1 auf Ubungsblatt 10.
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Puuh jetzt haben wir uns alle mal eine Pause verdient.

Spater kommt dann noch Kapitel 4, bis dahin: Guten Hunger ;)
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Zufallsvariablen

Definition
Sei (Q, A, P) ein Wahrscheinlichkeitsraum. Dann heifit eine A — B(R)-messbare Abbildung

X:QHR, LO'—)X(O)),

« Eine Zufallsvariable X ordnet also jedem Elementarereignis w einen Wert/eine Auszahlung
in R zu.

« Wenn f: (R,B(R)) — (R, B(R)) messbar ist, ist auch f(X) eine Zufallsvariable, da die
Verkettung messbarer Abbildungen messbar ist.

o X muss A — B(R)-messbar sein, damit wir die Wahrscheinlichkeit, dass X Werte in einer

Menge B € B(R) annimmt, bestimmen kdnnen.
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Verteilungen von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A, P). Dann heif3t

Not.

Px(B) = P(X € B) 2" P({w € Q : X(0) € B}) = P(X"'(B)), B¢ B(R),

von X.

« Hier wird die Messbarkeit von X wichtig, da wir dadurch wissen, dass X~1(B) € A fiir alle
B € B(R) gilt und somit Px(B) fur alle B € B(R) wohldefiniert ist.

o Py ist der von X.

« Nach der Vorlesung ist Px ein auf
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Verteilungsfunktionen von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A, P). Dann heif3t

Fx: R — [0,1], t Fx(t) =P(X <t)=Px((—oo,t]),

von X.

« Eine Zufallsvariable heif3t mit Dichte f, wenn die Verteilungsfunktion Fx(t)
von X die Dichte f hat.

« Eine Zufallsvariable heif3t ,wenn Fx(t) eine diskrete Verteilungsfunktion ist.
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Wichtige Rechenobjekte

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A, P). So heif}en, falls die
Integrale wohldefiniert sind:

E[X] ::/X(a)) dP(w) von X,
Q

E[X¥] == / XK(w) dP(w) von X,
Q

V[X] = E[(X — E[X])?] von X,

E[e**] ::/eAX(‘“) dP(w) von X.
Q
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Anwendung des Trafos um rechnen zu kénnen

Satz (Transformationssatz)

Seien (Q, A), (Q’, A’) messbare Raume, i ein MaB3 auf (Q, A), f: Q — Q" und g: Q" — R.

Dann ist g ps-integrierbar genau dann, wenn g o f p-integrierbar ist, und falls eine dieser

Eigenschaften erfullt ist gilt
/gOfd/l=/ gdpy.
Q o

Also gilt fiir eine Zufallsvariable X und eine messbare Funktion g: R — R

Elg(X)] = /O ¢(X()) dP(w) = /R £(x) dPx ()

wenn g o X P-integrierbar oder f Px-integrierbar ist.
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ElX] = /R xdPx(x),
VIX] = E[(X - E[X])?] = /R (x = E[X]) dPx(x),
Efe™] = / e dPy (x),

R

falls die Integrale existieren.

« Py ist (Danke Trafo!) ein W-Maf3 auf (R, B(R)), das heifit wir kdnnen jetzt wieder die
ublichen Berechnungsregeln definieren, falls Py eine Dichte hat oder eine Summe von
Dirac-Mafien ist. (siehe nachste Slide)
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Berechnungsregeln

Satz

Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A,P) undg : R — R messhar,
so gelten:

i) Ist X absolutstetig mit Dichte f, so gilt

Elg(X)] = /R (0f (x) dx

ii) Ist X diskret und nimmt die Werte ay, ..., ay € R mit Wahrscheinlichkeiten py, ..., py an, so gilt

[2(0)] Zg(akm
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Rechenregeln fiir den Erwartungswert

Satz
Seien X, Y Zufallsvariablen auf (Q, A, P) mit E[|X|],E[|Y|] < co und @, f € R, so gelten:

i) ElaX+ Y] =aE[X] + PE[Y]
i) X>0Pf.s.= E[X] =0und X > YPf.s. = E[X] = E[Y]
i) IstX=aP —f.s,dhP(X=a)=1,s0istE[X] =«
iv) P(X € A) = E[14(X)], insbesondere gilt Fx(t) = E[1 (0 (X)], t € R
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Momenterzeugende Funktion von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A, [P). Dann heif3t

Myx: D [0,00), t+ Mx(t) == E[e¥]
von X, wobei

D= {t € R: E[e¥] < c0}.
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Momenterzeugende Funktion von Zufallsvariablen

Definition
Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Q, A, [P). Dann heif3t

Myx: D [0,00), t+ Mx(t) == E[e¥]
von X, wobei

D= {t € R: E[e¥] < c0}.

« Esgilt immer D # 0, da Mx(0) = E[e®] = E[1] =1 < oo,
« Falls ein € > 0 existiert, mit (—¢,€) C D, so gilt nach der Vorlesung

E[X ] = M (0)

wobei M)((k)(O) die k—te Ableitung an der Stelle 0 ist.
~» Deshalb Funktion.
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Markov- und Tschebycheffungleichung

Satz (Markov- und Tschebycheffungleichung)

Sei X eine Zufallsvariable, dann gelten fiir a > 0 folgende Ungleichungen
i) Fir h: R — (0,00) wachsend gilt

E[h(X)]

P(X > a) < h(a)

(Markovungleichung)

ii) Fur h: [0,00) — (0, c0) wachsend gilt

E[A(IXD]

P(X| > a) < W

(Markovungleichung)

i)
P(X - E[X]| > a) < YN

= az

(Tschebycheffungleichung)
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Aufgabenblock 4

Sei (Q, A, P) ein Wahrscheinlichkeitsraum auf dem die Zufallsvariablen
X ~ Poi(2) Y ~ Bin(n, p) Z ~U([0,1])
mit A > 0, p € [0, 1], n € N gegeben seien.

a) Berechne den Erwartungswert der Zufallsvariable aX’+b, abecR.
b) Berechne die momenterzeugende Funktion und die Varianz von Y.

c) Berechne die Dichtefunktion der Zufallsvariable —Z.
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L6sung Aufgabenblock 4

a) Da X ~ Poi(A) gilt p = e"“}(—k!. Wir berechnen zunachst das zweite Moment
von X mithilfe von Indexverschiebungen und Linearitat:

A
[E X2 — k2 —/1_
[X?] kZ .
= k-e?
kZ (k=)
S ~ A(kﬂ)
:l;(k+1) e
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L6sung Aufgabenblock 4

wobei [E[ X] = A gerne nochmal gecheckt werden darf wer uns nicht glaubt.
Also gilt fur a, b € R mit Linearitat des Erwartungswerts:

E[aX*+b] =a-E[X*]+b=a- (A*+ 1) +b.
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L6sung Aufgabenblock 4

b) Da Y ~ Bin(n, p) gilt, dass My(t) Vt € R definiert ist, da Y nur Masse auf
{0,..., n} hat.
Durch den Binomischen Lehrsatz und da fiir Y ~ Bin(n, p)
pk = (7)p*(1 = p)™*, erhalten wir:

n

Z etk(Z)pk(1 _ p)n—k

(Z)(pet)" (1-p)"*

My (t) = E[e"]

Il
=~
M: I
o

=~
1l

0
= (pe' + (1-p)".
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L6sung Aufgabenblock 4

Mit dem Satz aus der Vorlesung gilt nun E[ Y] = M(Y")(o).
Zweimaliges Ableiten der Momenterzeugenden Funktion gibt:

MV () = n(pe + (1= p))"" - pe'
MP () = (n=1)n(pe' + (1= p)" - pe' - pe' + n(pe' + (1-p)"" - pe'

60



L6sung Aufgabenblock 4

Mit dem Satz aus der Vorlesung gilt nun E[ Y] = M(Y")(o).
Zweimaliges Ableiten der Momenterzeugenden Funktion gibt:

M () = n(pe' + (1= p)"" - pe'
MP () = (n=Dn(pe' + (1= p))" - pe' - pe' + n(pe' + (1= p))"" - pe'
Ausgewertet an der Stelle t = 0 gibt:
E[Y] = M{"(0) = n()"" - p=np
E[Y?] = M{P(0) = (n— 1)n(1)"2 - p* + np

=n’p? — np® + np
AlsoV(Y) = E[Y?] = (E[Y])? = np — np* = np(1 - p).
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L6sung Aufgabenblock 4

c) Seit € R.Dann giltda Z ~ U([0,1])

I]:D(—Z < t) :/_ ]].[0,1](—2)(12

o

Da0<-z<1©02>2z2>-1gilt

t t
P(—Z < t) :/ ]1[0,1](—2)(12 :/ ﬂ[_1,0](2)d2

(o] (o)

Damit gilt —Z ~ U([-1,0]) mit Dichte f(z) = 1|_1)(2).
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Zufallsvektoren

Definition
Sei (Q, A, P) ein Wahrscheinlichkeitsraum. Eine Abbildung

Xi(w)
p Xo(w)
X: Q- RY o X(w)= ) ,
Xa(®)
heif3t , falls sie ﬂ-B(Rd)-messbar ist.
« Xist genau dann ein Zufallsvektor, wenn alle X;: Q — R sind, also wenn

sie A-B(R)-messbar sind.
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Verteilungen von Zufallsvektoren

Definition
Das
Px(B) = P(X"'(B)), Be B(RY),
auf heif3t des Zufallsvektors X.
« Um die der Zufallsvariablen X;, i € {1,..., d}, zu berechnen nutzen wir folgende
Gleichung

P(X;ie B =P(XieR, X €eR,...,X;€B,..., Xy € R) =Px(RX...xBX...XR), Be B(R),

man nennt Py, dann auch
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Gemeinsame Dichten von Zufallsvariablen

Definition
Seien Xj, ..., Xy Zufallsvariablen auf (Q,, P).

i) Xi, ..., Xy haben die gemeinsame Dichte f, falls die gemeinsame Verteilungsfunktion F
absolutstetig ist und Dichte f hat.

ii) Xi,... Xg heiBen diskret, falls ai, ..., ay € R? existieren mit
P(X = ak) = P(X1 = ak,1, 0005 Xd = ak’d) = Pk

und ZkN=1 pr = 1furein N € NU {+co}.
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Gemeinsame Dichten

Satz
Seien Xy, ..., Xy Zufallsvariablen auf (Q, A, P).

(i) Haben X, ..., X4 die gemeinsame Dichte f, so haben Xi, ..., X4 Dichten fi, ..., f4 und es gilt

fi(x) =‘[ f(x1, 0 Xg) X1.0.Xg, X €R,

o0 —00 N e N —
—
Xx; fest ohne x;
(d—1)-viele

ist eine Dichte von X; fiir i = 1, ..., d. In Worten: Ist X absolutstetig, so sind alle X; absolutstetig

und die Dichten der X; entstehen durch Ausintegrieren aller anderen Variablen.

(i) Die Riickrichtung gilt im Allgemeinen nicht. Es gibt also absolutstetige Zufallsvariablen, die

keine gemeinsame Dichte haben.
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Unabhingige Zufallsvariablen

Definition
Seien Xi, ..., Xq Zufallsvariablen auf (Q,, P).

i) Xi, ..., Xy heiflen unabhingig, falls die gemeinsame Verteilungsfunktion in die
Randverteilungsfunktionen faktorisiert, d. h.

F)((l’1,..., l’d) = F)(](ﬁ) e FXd(td), eR
oder mit Wahrscheinlichkeiten geschrieben
P(X; <t, .. Xy <t))=P(X; <) ... - P(Xy < ty), teR.

ii) Xi, ..., X4 heiflen abhdngig, falls sie nicht unabhéngig sind.

iii) X, ..., Xy heiflen unabhédngig und identisch verteilt (u.i.v.), falls sie unabhangig und
identisch verteilt (Fx, = ... = Fx,) sind. Weil die gemeinsame Verteilungsfunktion F bei u.i.v.
Zufallsvariablen schon eindeutig durch jede Randverteilungsfunktion festgelegt ist, gibt

man oft nur die Verteilung von Xj an. -



Gemeinsame Dichten und Unabhingigkeit

Satz
Sind Xu, ..., Xq Zufallsvariablen mit gemeinsamer Dichte f, dann gilt:

X1, .. Xg sind unabhdngig &  f(x) = fi(x1) - ... - fa(xq) Lebesgue-fast iiberall,

wobei fi, ..., fq Dichten von X, ..., X4 sind.
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Rechenregeln mit gemeinsamen Dichten

Satz
Sind X, ..., Xg Zufallsvariablen auf (Q,,P), so gelten:

i) Fiir Ae B(RY) gilt E[14(X)] = P(X € A).
ii) Haben Xi, ..., X4 eine gemeinsame Dichte f, so gilt

Elg(Xi, ... Xq)] = -/[Rd E(X1y oy X)) (X1s oes Xg) (X1 ees Xdf)-

iii) Sind X, ..., X4 diskret und nimmt der Zufallsvektor X = (X, ..., X4) die Vektoren ay, ..., ay € R4
mit Wahrscheinlichkeiten py, ..., py an, so gilt

N N
E[g(X1, - Xa)] = ) prg(@) = ) P(X = ag(a).
k=1 k=1

Wie fiir d = 1 gilt in (ii) und (iii), dass die Erwartungswerte wohldefiniert sind (oder existieren),

genau dann, wenn die Integrale bzw. Summen wohldefiniert (oder endlich) sind.
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Rechenregeln fiir unabhingige Zufallsvariablen |

Satz
Sind Xu, ..., Xq unabhdngige Zufallsvariablen auf (Q,,P), so gilt

Elgi(X1) - ... - 8a(Xa)] = E[g1(X1)] - ... - E[ga(Xa)]
fiir alle messbaren g, ..., g4 : R — R. Insbesondere gilt auch
P(Xq € A1, ... Xg € Ag) = E[14,(X9)] - ... - E[14,(Xq)] = P(Xq € Ay) - ... - P(Xy € Ag)

fiir alle Ay, ..., Ag € B(R).

69



Rechenregeln fiir unabhingige Zufallsvariablen Il

Satz
Sind X, ..., Xg Zufallsvariablen auf (Q,,P), so gelten:

i) Fiir Ae B(RY) gilt E[14(X)] = P(X € A).
ii) Haben Xi, ..., X4 eine gemeinsame Dichte f, so gilt

Elg(Xi, ... Xq)] = -/[Rd E(X1y oy X)) (X1s oes Xg) (X1 ees Xdf)-

iii) Sind X, ..., X4 diskret und nimmt der Zufallsvektor X = (X, ..., X4) die Vektoren ay, ..., ay € R4
mit Wahrscheinlichkeiten py, ..., py an, so gilt

N N
E[g(X1, - Xa)] = ) prg(@) = ) P(X = ag(a).
k=1 k=1

Wie fiir d = 1 gilt in (ii) und (iii), dass die Erwartungswerte wohldefiniert sind (oder existieren),

genau dann, wenn die Integrale bzw. Summen wohldefiniert (oder endlich) sind.
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Faltung diskreter und stetiger Verteilungen

Fur diskrete Verteilungen braucht man die Faltung eigentlich tiberhaupt nicht! Seien Xi, X,

unabhangige, diskrete Zufallsvariablen. Dann gilt

P(X;+ X = a) = Z P(X, = a— b)P(X, = b).
beX, (Q)

Fir Summen unabhéngiger stetiger Zufallsvariablen braucht man hingegen die Faltung. Diese
liefert dann eine Regel fur die Dichte der Zufallsvariable X; + X3, wenn X3, X; unabhangig

J
ge,

stetige Zufallsvariablen, denn nach der Vorlesung gilt fiir diese

Frov(x) = /R = )y
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Aufgabenblock 5

a) Seien X ~ Poi(A), Y ~ Poi(f) mit A, § > 0 unabhangige Zufallsvariablen. Zeige, dass
X+ Y ~ Poi(A + p) gilt.

b) Seien X, Y unabhangige Zufallsvariablen mit Mx < oo, My(t) < oo fiir ein t € R. Zeige,
dass My.y (t) = Mx(t) - My(t) gilt.

72



L6sung Aufgabenblock 5

a) Mit der diskreten Faltungsformel

P(X+Y=n)= Z P(X=n-k)-P(Y = k)
keNy

—Z[P’(X—n—k) P(Y = k)

n n—k k
=Ze% 2 )l'eiﬁﬂ_|
24 n—ly! ¢ i

n A(n—k) ﬁk
_ B B
¢ ¢ Z(n—k)! Kl

A(n k) ,Bk
e AP o 2
Z (n—k)! Kk
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L6sung Aufgabenblock 5

n n—k n—k k
ey MO B e ”'Z AT B
Zi(n—ht’ (n—K! K

]
e AP A(n=k) .
Z (n- k)lkl s

1 n
_ B (n—k) . gk
=€ nl Z (k)/l p

" k=0
_owp A"
B n!

Also gilt P(X+ Y = n) = P(Z = n) fur Z ~ Poi(A+ ) fur alle n € N und damit X+ Y ~ Poi(4 + ).
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L6sung Aufgabenblock 5

b) Da die Erwartungswerte unabhéangiger Zufallsvariablen faktorisieren gilt fir alle t € R

Muay (8) = E[e" X = E[e” - &"] = E[e¥]E[ "] = Mx(£) - My(t)
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (X,)nen eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Q, A, P). Dann konvergiert (X;,)nen (P)- gegen X, falls

P(Jergoanx) =P({weQ:’1IergoXn(w)=X(w)}) _

gilt. Man schreibt

« Die Konvergenz von Zufallsvariablen ist dazu dquivalent, dass eine
P-Nullmenge N € A existiert, sodass fiir alle w € NCE

||_)n20 Xo(w) = X(w)

gilt.
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Konvergenz von Zufallsvariablen

Definition
Sei X eine Zufallsvariable und (X,),en eine Folge von Zufallsvariablen auf einem
Wabhrscheinlichkeitsraum (Q, A, P) mit E[|X|P] < oo, E[|X,|P] < 0o,Vn € N, fureinp > 1.
Dann konvergiert (X,)pen (oder ) gegen X, falls

lim E[|X, — X|P] =0

n—oo

gilt. Man schreibt
LP
X, — X.

n—oo

« lhr kennt die LP-Konvergenz schon aus dem Kapitel zu £P-Raumen, nur wird sie hierbei

explizit auf Zufallsvariablen angewendet (denkt daran Erwartungswerte sind D.
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Konvergenz von Zufallsvariablen

Definition

Sei X eine Zufallsvariable und (X,),en eine Folge von Zufallsvariablen auf einem

Wahrscheinlichkeitsraum (Q, A, P). Dann konvergiert (X,)nen (oder
) gegen X, falls fur alle € > 0

lim P(|X, = X|>¢€)=0
n—oo

gilt. Man schreibt

« Man folgert stochastische Konvergenz haufig direkt aus der Konvergenz im p-ten Mittel mit

der -Ungleichung (oder Spezialfall -Ungleichung).
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Konvergenz von Zufallsvariablen

Definition

Sei X eine Zufallsvariable und (X,)nen eine Folge von Zufallsvariablen auf einem
Wahrscheinlichkeitsraum (Q, A, ). Dann konvergiert (X,)nen gegen X, falls fir
alle , , reell-wertigen Funktionen f (oder kurz Vf € Cp(R))

lim E[f(Xa)] = E[f(X)]

gilt. Man schreibt

d
X,,QX.

n—oo

« Die Konvergenz in Verteilung ist die (hier behandelte) Art der Konvergenz von

Zufallsvariablen.
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Bildchen (Konvergenzdiagramm)
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Schwaches GGZ

Satz

i) Klassische Variante: Sind X1, X,, ... w.i.v. mit E[X?] < oo, so gilt

—ZX ﬂE)ﬁ

ii) Variante mit schwicheren Annahmen: Sind X1, X, . . . paarweise unkorreliert mit identischem

Erwartungswert und
1 n
= kZ V(X0 —0.

so gilt
Z =
= Xy o E[X1].
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Starkes GGZ

Satz
Sind X1, Xa, . .. u.i.v. mit E[| Xq|] < oo, so gilt

= X—>[EX1

n—oo
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Starkes GGZ

Satz
Sind X1, Xa, . .. u.i.v. mit E[| Xq|] < oo, so gilt

= X—>[EX1

n—oo

« Teil (i) im schwachen GGZ wurde nur aus didaktischen Griinden behandelt, denn diese
Aussage folgt direkt aus dem starken Gesetz der grofien Zahlen.

« Teil (ii) im schwachen GGZ ist deutlich interessanter, denn unter diesen Annahmen muss
das starke GGZ nicht gelten!
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Aufgabenblock 6

a) Sei (Q, A,P) ein WRaum auf dem die Folgen von Zufallsvariablen
(Xin)nens (Yn)nen und eine Zufallsvariable Z gegeben seien mit

Xn ~ Exp(n), [E[Yn] = 7 \/[ Yn] =

fur o > 0. Zeige X, —>0undY 7z 5z

n—oo

b) Seien X1, X5, ... paarwelse unkorreliert mit identischem Erwartungswert und
gelte V(Xy) < cVkeN,c> 0.
Zeige oder Widerlege: Das schwache GGZ gilt immer noch!

c) Zeige: Seien Xi, X, ... u.i.v., so gilt fir A € B([R)

—#{l <n:X¢€ A} [FD(X1 € A).
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L6sung Aufgabenblock 6

a) Sei € > 0. Dann gilt fir n e N
P(]X,— 0] > €) =P(X, > ¢€)

=1-P(X, <¢)
= 1= FX,,(E)
=1-(1-¢")
= e—ne

und somit folgt
lim P(|X,—0] >¢€) =0,
n—oo

fur alle € > 0, also per Definition
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L6sung Aufgabenblock 6
Sei € > 0. Dann gilt fiir n € N mit der Markov-Ungleichung und der

Verschiebungsformel
P(Z+Y,—Z| >¢€) =P(|Y,] > ¢)
_ElIY.?]
<
_ V() +E[Y)?
= =
o?+1
ne?
und somit folgt lim P(|Z + Y, - Z| > €) =0, also per Definition
n—oo

Z+Y, 45 7

n—oo

)



L6sung Aufgabenblock 6

b) Sei € > 0 beliebig.
O.B.d.A sei E[ X;] der Erwartungswert aller Xy, sodass
E[L 30 Xe—E[Xi]1=0k={1,...,n}.
Wie im Beweis des Schwachen GGZ machen wir erst Tschebychef, dann
Bienayme:

Py 25 % =Bl > ) =P 506 - EDXDI 2 ne)

V(X Xk — E[Xa])
S n2€2
_ V(ZZ:1 Xk)

n2e?
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L6sung Aufgabenblock 6

_ 2221 V(Xk)
n2e2
ZZ—] c C
< —— = — — 0,n — oo,
ne2 ne?

wobei wir im letzten Schritt die Voraussetzung angewandt haben.
Wir sehen also: Auch unter der Annahme, dass die Varianzen lediglich
beschrankt sind, gilt das schwache GGZ noch!
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L6sung Aufgabenblock 6

c) Fur i € N definieren wir
Yi = 14(X)

Die Y; sind u.i.v nach Korollar 4.2.28 und es gilt
[E[Y1] = [E[ILA(XO] = P(X] (S A) <1<

Also kann das starke Gesetz der grofien Zahlen angewandt werden und es
gilt

1 . 1% f.s.

—#{i<n:X €A} = —Z Y: 25 E[Yq] = P(X, € A).

n n&d - n—eo
Die gezeigte Aussage heifdt iibrigens Empirisches Gesetz der grofien Zahlen.
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Danke und Viel Erfolg!

« Juhu, Wir haben ’s geschafft fiir heute!

« Wir hoffen, lhr konntet etwas von heute und der Ubung generell mitnehmen und hattet so
wie wir auch Spaf} dran:)

« Ganz viel Erfolg fiir die Klausur am Freitag! Daumen fiir Euch alle sind gedriickt!

Eure Ubungskeks Leo und Martin! (Wer wima-memes abonniert hat versteht “s)
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