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1. SoftMax parameterisation

a) Show for the tabular softmax parametrisation from Example 5.0.2 that

∂ log(πθ(a ; s))

∂θs′,a′
= 1{s=s′}(1{a=a′} − πθ(a′ ; s′))

and for the linear softmax with features Φ(s, a)

∇ log(πθ(a ; s)) = Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

Solution:

By the definition of the tabular softmax parametrisation (πθ(a ; s) = eθs,a∑
ã∈A eθ

s,ã ) we have

log(πθ(a ; s)) = θs,a − log(
∑
ã∈A

eθs,ã).

So for the derivative holds if s′ ̸= s then

∂ log(πθ(a ; s))

∂θs′,a′
= 0.

If s′ = s and a′ = a then

∂ log(πθ(a ; s))

∂θs,a
= 1− 1∑

ã∈A eθs,ã
eθs,a = 1− πθ(a ; s)

and if s′ = s and a′ ̸= a then

∂ log(πθ(a ; s))

∂θs,a′
= − 1∑

ã∈A eθs,ã
eθs,a′ = −πθ(a′ ; s).

Summing up we get

∂ log(πθ(a ; s))

∂θs′,a′
= 1{s = s′}(1{a=a′} − πθ(a′ ; s′)).

Similarly, for the linear softmax with features Φ(s, a) we have

log(πθ(a; s)) = θ · Φ(s, a)− log(
∑
a′∈A

eθ·Φ(s,a′)).

The derivative can be calculated without considering specific cases, we obtain

∇ log(πθ(a; s)) = Φ(s, a)− 1∑
a′∈A eθ·Φ(s,a′)

∑
a′∈A

Φ(s, a′)eθ·Φ(s,a′)

= Φ(s, a)−
∑
a′∈A

Φ(s, a′)
eθ·Φ(s,a′)∑

a′∈A eθ·Φ(s,a′)

= Φ(s, a)−
∑
a′∈A

Φ(s, a′)πθ(a′ ; s).
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b) Show that the tabular and linear softmax parametrisation fulfill Assumption 5.1.11, i.e. that

log
(
πθ(a; s)

)
is L-smooth and ∇ log

(
πθ(a; s)

)
has bounded norm for any (s, a) ∈ S ×A.

Solution:

We start with the tabular softmax case. First, similar to the above calculations we can see

that

∂πθ(a; s)

∂θs′,a′
=

∂

∂θs′,a′

exp(θs,a)∑
ã∈A exp(θs,ã)

=

∑
ã∈A exp(θs,ã)

∂
∂θs′,a′

exp(θs,a)− exp(θs,a)
∂

∂θs′,a′

∑
ã∈A exp(θs,ã)(∑

ã∈A exp(θs,ã)
)2

= 1{s=s′,a=a′}
exp(θs,a)∑
ã∈A exp(θs,ã)

− 1{s=s′}
exp(θs,a)∑
ã∈A exp(θs,ã

·
exp(θs,a′)∑
ã∈A exp(θs,ã

= 1{s=s′,a=a′} π
θ(a; s)︸ ︷︷ ︸
∈[0,1]

−1{s=s′} π
θ(a; s)πθ(a′, s)︸ ︷︷ ︸

∈[0,1]

∈ [−1, 1].

Therefore, with the mean value theorem we obtain that πθ(a; s) is Lipschitz continuous for

fixed (s, a) ∈ S ×A with Lipschitz-constant 1:

∥πθ1(a; s)− πθ2(a; s)∥∞ = ∥∇θπ
θ∗(a; s)∥∞∥θ1 − θ2∥∞ ≤ ∥θ1 − θ2∥∞.

This and part a) allow us to compute that for all θs′,a′∣∣∣∣∣∂ log
(
πθ1(a; s)

)
∂θs′,a′

−
∂ log

(
πθ2(a; s)

)
∂θs′,a′

∣∣∣∣∣ = 1{s=s′}|πθ1(a′; s′)− πθ2(a′; s′)| ≤ ∥θ1 − θ2∥∞

and thus the 1-smoothness of log
(
πθ(a; s)

)
. Furthermore, since πθ is a measure and its

values therefore below 1 we can directly compute for any θs′,a′:∣∣∣∣∣∂ log
(
πθ(a; s)

)
∂θs′,a′

∣∣∣∣∣ ≤ 1,

which finishes the proof in the tabular setting. Now let us consider the linear softmax para-

metrisation. Similarly to above we obtain Lipschitz-continuity of the gradient:

∇θπ
θ(a; s) = ∇θ

exp(θ · ϕ(s, a))∑
ã∈A exp(θ · ϕ(s, ã))

=

∑
ã∈A exp(θ · ϕ(s, ã))∇θ exp(θ · ϕ(s, a))− exp(θ · ϕ(s, a))∇θ

∑
ã∈A exp(θ · ϕ(s, ã))(∑

ã∈A exp(θ · ϕ(s, ã)
)2

= πθ(a; s)ϕ(s, a)︸ ︷︷ ︸
∈[0,1]

−πθ(a; s)︸ ︷︷ ︸
∈[0,1]

∑
ã∈A

πθ(ã; s)︸ ︷︷ ︸∑
a=1

ϕ(s, ã) ∈ [− max
(s,a)∈S×A

ϕ(s, a), max
(s,a)∈S×A

ϕ(s, a)]

Again, using part a) we can calculate that

∥∇ log
(
πθ1(a; s)

)
−∇ log

(
πθ2(a; s)

)
∥∞ ≤

∑
a′∈A

ϕ(s, a′)∥πθ1(a′, s)− πθ2(a′, s)∥∞

≤ |A| max
(s,a)∈S×A

ϕ(s, a)2∥θ1 − θ2∥∞
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and thus the L-smoothness of log
(
πθ(a; s)

)
. Analogously we obtain the boundedness of its

gradient, finishing the proof:

|∇θπ
θ(a; s)| = |ϕ(s, a)−

∑
a′∈A

πθ(a′; s)ϕ(s, a′)| ≤ max
(s,a)∈S×A

|ϕ(s, a)| − min
(s,a)∈S×A

|ϕ(s, a)|.

2. Policy Gradient Theorems

For episodic MDPs (the MDP terminates almost surely under all policies πθ), we can get rid of

the assumption of the existence of ∇Js(θ). Go through the proof of Theorem 5.1.6 and argue

why it is enough to assume the existence of ∇πθ(· ; s) for all s ∈ S.

Solution:

Recall the proof of Theorem 6.1.6 (Policy Gradient Theorem in infinite time horizon). The first

step of the proof was to show by induction that

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As′

∇πθ(a; s′)Qπθ
(s′, a)

+
∑
s′

γn+1p(s → s′; t, πθ)∇Js′(θ)

for all n ∈ N. Now assume that the MDP is terminating. Then there exists a random time T ,

which is almost surely finite, such that p(ŝ; ŝ, a) = 1 and R(ŝ, a) = 0 for all a ∈ Aŝ. Intuitively,

we want to argue that the RHS regarding the claim proven by induction stated above exists because

Jŝ(θ) is zero after the terminating time T . If we assume that πθ is differentiable in θ, then

T−1∑
t=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a)

exists almost surely. It remains to show that this is equal to the derivative of ∇Js(θ). By the

termination we know that p(s → ŝ;T, πθ) = 1 and Jŝ(θ) = 0. Thus,

T−1∑
t=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a)

=
T−1∑
t=0

∑
s′∈S

p(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a) +

∑
s′

γT+1p(s → s′;T, πθ)∇Js′(θ)

exists almost surely. Reading the equations in the proof of Theorem 6.1.6 backwards yields that

this is equal to ∇Js(θ). We are allowed to interchange the derivative and the sums as stated

there, because we know that the RHS exists.

3. Baseline Trick

a) Show that the constant baseline b in Theorem 5.1.16 can be replaced by any deterministic

state-dependent baseline b : S → IR, i.e.

∇θJ(θ) = IEπθ

s

[ T−1∑
t=0

∇θ

(
log πθ(At ; St)

)(
Qπθ

t (St, At)− b(St)
)]
.
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Solution:

The computation is very similar to the computations in the lecture notes. Assume that

b : S → IR, then

IEπθ

s

[
∇θ

(
log πθ(At ; St)

)
b(St)

]
=

∑
st∈S

∑
at∈As

Pπθ

s (St = st)π
θ(at ; st)∇θ

(
log πθ(at ; st)

)
b(st)

=
∑
st∈S

Pπθ

s (St = st)b(st)
∑

at∈As

∇θπ
θ(at ; st)

=
∑
st∈S

Pπθ

s (St = st)b(st)∇θ

∑
at∈A

πθ(at ; st)︸ ︷︷ ︸
=1

= 0.

If the baseline remains unaffected by the action, we can express the baseline separately from

the summation over a. This condition is sufficient for the trick to be effective.

b) Write down and prove the baseline gradient representation with baseline b : S → IR for

infinite discounted MDPs.

Solution:

We aim to prove

∇Js(θ) =
∑
s′∈S

ρπ
θ

s (s′)
∑
a∈As′

∇πθ(a; s′)
(
Qπθ

(s′, a)− b(s′)
)
,

for some b : S → IR. By the finiteness of the state and action space we have that∑
s′∈S

ρπ
θ

s (s′)
∑
a∈As′

∇πθ(a; s′)b(s′)

=
∑
s′∈S

ρπ
θ

s (s′)b(s′)∇
∑
a∈As′

πθ(a; s′)

︸ ︷︷ ︸
=1

= 0.

Hence, the claim follows from the policy gradient theorem for discounted MDPs (5.1.6) in

the lecture.
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