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1. (µ-strong) convexity

a) Prove that all local minima of convex functions must be global minima. In particular, this

means that all global minima have same height.

Solution:

Let x∗ be a local minimum of a convex function f and assume there exists x0 such that

f(x0) < f(x∗). By convexity for every t ∈ (0, 1] we then have

f
(
(1− t)x∗ + tx0

)
≤ (1− t)f(x∗) + tf(x0) < (1− t)f(x∗) + tf(x∗) = f(x∗).

Then for every ϵ-ball around x∗ there exists a t0 such that ∥(1− t0)x
∗ + t0x0 − x∗∥ < ϵ but

f((1− t)x∗+ t0x0) < f(x∗), which is a contradiction. Thus, x∗ must be a global minimum.

b) Show that a µ-strongly convex function has a unique global minimum.

Solution:

Let x0 = 0 be fixed. From the µ-strong convexity and we know that

f(y) ≥ f(0) + yT∇f(0) +
µ

2
∥y∥2 ≥ f(0) + c∥y∥1 +

µ

2
∥y∥21,

where we used wlog. the 1-norm because of equivalence of norms and c = mini
(
∇f(0)

)
i
.

Therefore we know that there exists an R > 0 such that for ∥y∥ > R it holds f(y) ≥ f(0).

Thus, if a minimum exists, it must lie in the closure of B(0, R), which is compact. Since we

assumed µ-strongly convex functions to be differentiable this yields a unique global minimum.

Note, that with a more general definition of µ-strong convexity that involves sub-gradients

this proof does not work!

c) Let f : Rd → R with f(x) = xTAx for a matrix A ∈ Rd×d. Show that f is L-smooth and

µ-strongly convex, where L is twice the largest and µ twice the smallest singular value.

Solution:

Due to the equivalence of norms, the definition of the operator norm, and the fact that

∇f(x) = (AT +A)x it holds

∥∇f(x)−∇f(y)∥2
∥x− y∥2

=
∥(AT +A)(x− y)∥2

∥x− y∥2
≤ 2∥A∥2 =: L

Because the 2-norm matches the largest singular value the first part of the assertion is

proved. With the singular value decomposition and the fact that orthogonal matrices do not

change the length of a vector we obtain

yTAy = yTOΣV ∗y ≥ µ

2
yTOV ∗y =

µ

2
∥y∥22,
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where µ = miniΣii, i.e. the smallest singular value. This immediately yields

f(x+ y) = (x+ y)TA(x+ y) = xTAx+ xTAy + yTAx+ yTAy

≥ xTAx+ yT (A+AT )x+
µ

2
∥y∥22 = f(x) + yT∇f(x) +

µ

2
∥y∥22

and with y = z − x the µ-strong convexity.

2. PL-condition

a) Prove that µ-strong convexity implies the PL-condition (4.5), i.e.

∥∇f(x)∥2 ≥ 2r(f(x)− f∗) ∀x ∈ IRd (1)

for r = µ and f∗ = minx∈IRd f(x) > −∞.

Solution:

Recall by the definition of µ-strong convexity, that

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2.

In the first exercise we showed that there exists a global minimum with value f∗ > −∞.

Minimizing both sides of the equation still fulfills the inequality:

min
y

f(y) = f∗,

and

∇f(x) + µ(y − x)
!
= 0 ⇔ y = x− 1

µ
∇f(x).

As the second derivative wrt y of the RHS is µ > 0 we see that this is a minimum. Plugging

in both minima we obtain that

f∗ ≥ f(x) +∇f(x)T (x− 1

µ
∇f(x)− x) +

µ

2
∥x− 1

µ
∇f(x)− x∥2

= f(x)− 1

µ
∥∇f(x)∥2 + 1

2µ
∥∇f(x)∥2

= f(x)− 1

2µ
∥∇f(x)∥2.

Rearranging results yields

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗).

b) Show that f(x) = x2 + 3 sin2(x) satisfies the PL-condition and prove that f is not convex.

Plot the function to see why gradient descent converges.

Hint: The plot can also help to find the parameter r of the PL-condition.
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Solution:

If we plot f and (f ′)2 we see that for r = 1
6 we have the PL-condition.

We argue why large x are not a problem: we have f ′(x) = 2(x + 3 sin(x) cos(x)) and

therefore

f ′(x)2 = 4(x+ 3 sin(x) cos(x)︸ ︷︷ ︸
∈[−1,1]

)2

|x|≥3

≥ 4(|x| − 3)2

= 4x2 − 24|x|+ 36

=
1

3
x2 +

11

3
x2 − 3(8|x|)︸ ︷︷ ︸
≥0, for x≥8

+36

≥ 1

3
(x2 + 3 sin(x)2),

for x ≥ 8. x ≤ 8 is clear from the plot.

Further, f is not convex, as

f(
1

2
π +

1

2
0) =

π2

4
+ 3 >

1

2
f(π) +

1

2
f(0).

3. Stochastic gradient descent

In the lecture we proved convergence of SGD to stationary points if the function is L-smooth

and bounded from below and we use stepsizes fulfilling the Robbins-Monro conditions. Consider

the setting from the theorem of the lecture and additionally assume µ-strong convexity. Prove

that ∥Xn − x∗∥ → 0 almost surely.

Solution:

We proved above that the PL inequality is satisfied for µ-strongly convex functions. This implies

µ

2
∥Xn − x∗∥2 ≤ F (Xn)− F (x∗)− ⟨∇F (x∗)︸ ︷︷ ︸

=0

, Xn − x∗⟩
PL
≤ 1

2µ
∥∇F (Xn)∥2 → 0.

3



The sandwich theorem now implies F (Xn) → F (x∗) almost surely.

4. Fully deterministic game with non-convex value function

Imagine a game where you have two states s1 and s2 and two actions a1 and a2 in each of the

states. The game is fully deterministic and after each turn switches, regardless of the action, bet-

ween s1 s2, giving, regardless of the state, a reward of 1 in a1 and −1 in a2 and γ ∈ (0, 1). Assume

a “learner”, that decides based on a one-dimensional linear softmax with features ϕ(s, a) ∈ R.
Show that there exist (non-trivial) values of the features such that the value function of this

game is non-convex in the parameter θ of the softmax family.

Solution:

The game dynamics imply p(si; sj , a) = 1 − δij for all actions a and r(s, ai) = δ1(i) − δ2(i) for

all states s. Because the policies are measures we further know
∑

a πθ(a; s) = 1 for all states s.

Additionally recall the solution to the Bellman expectation operator in vector notation:

V π = (1− γP π)−1rπ,

where

P π =

(∑
a

π(a; s)p(s′; s, a)

)
(s,s′)

and

rπ =

(∑
a

π(a; s)r(s, a)

)
s

.

With the observations above, we can deduce

P π =

(
0

∑
a πθ(a, s1)∑

a πθ(a, s2) 0

)
=

(
0 1

1 0

)
and rπ =

(
πθ(a1, s1)− πθ(a2, s1)

πθ(a1, s2)− πθ(a2, s2)

)
.

Now we choose the features ϕ(ai, s) = δ1(i) − δ2(i) for all states s. The inverse of 1 − γP π

only changes constants and does not depend on the parameter so an analysis of rπ suffices. We

calculate

rπ =

(
exp(θ)−exp(−θ)
exp(θ)+exp(−θ)
exp(θ)−exp(−θ)
exp(θ)+exp(−θ)

)
,

which is non-convex in θ.

5. Non-convex, L-smooth value function

Imagine a game with a starting state, two states s0 and s1 as well as a terminal state T . A

player in the starting state may decide to transfer to either state and receive rewards R0 and

R1 accordingly, after which he is transferred to the terminal state. Consider the (differentiable

parameterised) family of stationary policies {πθ}θ∈[0,1] with

πθ = θ2δ→s0 + (1− θ2)δ→s1

that transfers to s0 with probability θ2 and to s1 with probability 1− θ2.
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a) Assume that R0 and R1 are chosen uniformly and independently according to a continuous

probability distribution. Show that the value function is non-convex with a probability of

at least 1
2 .

Solution:

The value function in all states other than the starting state is zero because we can only

receive rewards in the after the first decision, so we drop the dependence on the state. The

value function of this one-step MDP in dependence on the parameter θ can be directly

computed for fixed R0 and R1:

J(θ) = E[R] = R0θ
2 +R1(1− θ2).

This function is definitely non-convex whenever for λ ∈ (0, 1)

J
(
(1− λ)0 + λ1) > (1− λ)J(0) + λJ(1)

⇔ λ2R0 + (1− λ2)R1 > (1− λ)R1 + λR0

⇔ (1− λ)(R1 −R0) > 0

⇔ R1 > R0

If we choose R1 and R2 uniformly and independently from a continuous probability distri-

bution it holds

P(Ω) = P(R1 = R0) + P(R1 > R0) + P(R1 < R0) = 2P(R1 > R0)

and therefore the probability of having R1 > R0 (in which case J is non-convex) is exactly
1
2 , which proves the assertion.

b) Show that regardless of the values of R0 and R1 the value function is L-smooth, so that

the gradient descent with diminishing stepsizes from the lecture converges.

Solution:

The gradient of J is given by ∇J(θ) = 2θR0 − 2θR1 and thus direct computation reveals

∥∇J(θ1)−∇J(θ2)∥ = ∥2(R0 −R1)(θ1 − θ2)∥ = L∥θ1 − θ2∥

with L = ∥2(R0 − R1)∥ for R0 ̸= R1, whereas for R0 = R1 it is trivially L-smooth for all

values of L. Since Theorem 5.4.1 only needs an L-smooth function, gradient descent with

diminishing stepsizes converges.

c) Show that, regardless of the values of R0 and R1, if you restrict the parameter θ to a subset

[θ0, θ1] ⊂ [0, 1] it fulfills the PL-condition and find a constant stepsize, such that gradient

descent with constant stepsize converges to a global minimum.

Solution:

First assume R0 = R1 = R. Then

∥∇J(θ)∥2 = ∥2θ(R0 −R1)∥2 = 0 and J(θ) = R = min
θ

J(θ)

5



and thus the PL-condition is fulfilled on [0, 1] for any r. Now assume that R0 > R1 and

θ ∈ [θ0, θ1]. Then

∥∇J(θ)∥2 = 2θ(R1 −R0)
2 and min

θ
J(θ) = R0θ

2
1 +R1(1− θ21)

Then we see that the PL-condition is fulfilled for r =
θ20

θ21−θ20
∥2(R0 −R1)∥:

∥∇J(θ)∥2 ≥ 2r(J(θ)− J∗)

⇔ 4θ2(R0 −R1)
2 ≥ 2r

(
R0θ

2 +R1(1− θ2)−R0θ
2
1 −R1(1− θ21)

)
⇔ 4θ2(R0 −R1)

2 ≥ 2r(R1 −R0)(θ
2
1 − θ2)

⇔ θ2

θ21 − θ2
∥2(R0 −R1)∥ ≥ θ20

θ21 − θ20
∥2(R0 −R1)∥ = r,

where switching to the last line we exclude the case θ = θ1 since in this case the inequality

holds trivially. In the case of R1 > R0 the minimum of J is attained at θ0 and the condition

for the inequality similarly becomes

θ2

θ2 − θ20
∥2(R0 −R1)∥ ≥ θ20

θ21 − θ20
∥2(R0 −R1)∥ = r,

where analogously the case θ = θ0 is excluded due to trivially fulfilling the inequality in

the line before. In the case R0 = R1 the function J is L-smooth with any chosen L and

the PL-condition holds for any r, so by Theorem 5.3.1 convergence of the gradient descent

holds with any constant stepsize. In order to obtain convergence with constant stepsize

α = 1
L = 1

∥2(R0−R1)∥ first we need that L > r. This is equivalent to

1 >
θ20

θ21 − θ20
⇔ θ21 − θ20 > θ20 ⇔ θ21 − 2θ20 > 0.

Finally, we also need to have r > 0, which is the case whenever additionally θ0 > 0 holds.

Thus we can set θ1 = 1 and obtain convergence with constant stepsize α if we restrict the

parameter θ to [θ0, 1] for some θ0 ∈
(
0, 14
)
.
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