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For this assignment, knowledge from lectures 1 to 22 is assumed.

1. (µ-strong) convexity

a) Prove that all local minima of convex functions must be global minima. In particular, this

means that all global minima have same height.

b) Show that a µ-strongly convex function has a unique global minimum

c) Let f : Rd → R with f(x) = xTAx for a matrix A ∈ Rd×d. Show that f is L-smooth and

µ-strongly convex, where L is twice the largest and µ twice the smallest singular value.

2. PL-condition

a) Prove that µ-strong convexity implies the PL-condition (4.5), i.e.

∥∇f(x)∥2 ≥ 2r(f(x)− f∗) ∀x ∈ IRd (1)

for r = µ and f∗ = minx∈IRd f(x) > −∞.

b) Show that f(x) = x2 + 3 sin2(x) satisfies the PL-condition and prove that f is not convex.

Plot the function to see why gradient descent converges.

Hint: The plot can also help to find the parameter r of the PL-condition.

3. Stochastic gradient descent

In the lecture we proved convergence of SGD to stationary points if the function is L-smooth

and bounded from below and we use stepsizes fulfilling the Robbins-Monro conditions. Consider

the setting from the theorem of the lecture and additionally assume µ-strong convexity. Prove

that ∥Xn − x∗∥ → 0 almost surely.

4. Fully deterministic game with non-convex value function

Imagine a game where you have two states s1 and s2 and two actions a1 and a2 in each of the

states. The game is fully deterministic and after each turn switches, regardless of the action, bet-

ween s1 s2, giving, regardless of the state, a reward of 1 in a1 and −1 in a2 and γ ∈ (0, 1). Assume

a “learner”, that decides based on a one-dimensional linear softmax with features ϕ(s, a) ∈ R.
Show that there exist (non-trivial) values of the features such that the value function of this

game is non-convex in the parameter θ of the softmax family.
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5. Non-convex, L-smooth value function

Imagine a game with a starting state, two states s0 and s1 as well as a terminal state T . A

player in the starting state may decide to transfer to either state and receive rewards R0 and

R1 accordingly, after which he is transferred to the terminal state. Consider the (differentiable

parameterised) family of stationary policies {πθ}θ∈[0,1] with

πθ = θ2δ→s0 + (1− θ2)δ→s1

that transfers to s0 with probability θ2 and to s1 with probability 1− θ2.

a) Assume that R0 and R1 are chosen uniformly and independently according to a continuous

probability distribution. Show that the value function is non-convex with a probability of

at least 1
2 .

b) Show that regardless of the values of R0 and R1 the value function is L-smooth, so that

the gradient descent with diminishing stepsizes from the lecture converges

c) Show that, regardless of the values of R0 and R1, if you restrict the parameter θ to a subset

[θ0, θ1] ⊂ [0, 1] it fulfills the PL-condition and find a constant stepsize, such that gradient

descent with constant stepsize converges to a global minimum.

6. *Programming task: REINFORCE

The aim of this exercise is to implement Algorithms 31 and 32: REINFORCE and Mini-batch

REINFORCE. To get started, study the A2C algorithm (e.g. here)—it’s already implemented in

Stable Baselines3. Use the existing A2C implementation as a template: copy it into a separate

folder within the Stable Baselines3 Zoo and modify it where necessary. Don’t forget to create a

corresponding hyperparameter file.

7. *Programming task: Experiment size and metrics

The aim of this exercise is to help you understand the difference in experiment scale between

tabular environments and classic control tasks. Train your custom algorithms on the Gymna-

sium environments Acrobot and CartPole, using as many seeds as feasible within a reasonable

timeframe. Monitor and plot the logged metrics, and compare them to what you’ve seen in the

tabular case. Additionally, explore the rliable python package and use it to visualize further ag-

gregated evaluation metrics across the two environments. Reflect on why rliable and its metrics

have become widely used in the RL community and what problem they solve.

Hint: It can be interesting to see how trained agents behave in the environments. Try using the

enjoy function to visualize their performance.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

May 13, 2025, at Mathelounge in B6 B301.
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https://medium.com/data-science/understanding-actor-critic-methods-931b97b6df3f
https://pypi.org/project/rliable/

