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1. Convergence of Q-Learning

The assumptions and definitions of Theorem 3.5.3 (Convergence of Q-Learning) are given.

Moreover, let

F (Q)(s, a) := Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q(S1, a
′)
]

and

εn(s, a) := R(s, a) + γ max
a′∈As′

Qn(s
′, a′)− F (Qn)(s, a)

for all (s, a) ∈ S ×A and n ∈ IN. Show that the sequence

Qn+1(s, a) := Qn(s, a) + αn(s, a)
(
F (Qn)(s, a)−Qn(s, a) + εn(s, a)

)
, n ∈ IN

almost surely converges to Q∗.

Solution:

We aim to apply Theorem 3.3.8.. Therefore we have to show that

a) F : IR|S||A| → IR|S||A| is a contraction with respect to the || · ||∞-norm, and

b) εn(s, a) is Fn+1-measurable, IE[εn(s, a)|Fn] = 0, and there are some A,B such that

sups,a IE[ε
2
n(s, a)|Fn] ≤ A+B∥Q∥2∞.

We show a) by checking the definition of a contraction:

∥F (Q1)− F (Q2)∥∞

= max
s,a

{∣∣Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q1(S1, a
′)
]
− Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q2(S1, a
′)
]∣∣}

= γmax
s,a

{∣∣Eπa

s

[
max

a′∈AS1

Q1(S1, a
′)− max

a′∈AS1

Q2(S1, a
′)
]∣∣}

≤ γmax
s,a

{∣∣Eπa

s

[
max

a′∈AS1

(Q1(S1, a
′)−Q2(S1, a

′))
]∣∣}

≤ γmax
s,a

{
Eπa

s

[
max

s′∈S,a′∈AS1

∣∣Q1(s
′, a′)−Q2(s

′, a′)
∣∣]}

= γmax
s,a

{
Eπa

s

[
∥Q1 −Q2∥∞

]}
= γ∥Q1 −Q2∥∞.
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We move on to claim b). The errors are Fn+1-measurable by definition and for the expectation

we see directly that

IE[εn(s, a)|Fn] = IE[R(s, a) + γ max
a′∈As′

Qn(s
′, a′)− F (Qn)(s, a)|Fn]

= IE
[
R(s, a) + γ max

a′∈As′
Qn(s

′, a′)− Eπa

s

[
R(s, a) + γ max

a′∈AS1

Qn(S1, a
′)
]]

= 0,

because the state state s′ in the algorithm is sampled from p(· ; s, a). The last claim follows directly

from the assumption on bounded rewards as in 3.5.1 and 3.5.2:

E[ϵ2s(n)|Fn] ≤ E[(R(s, a) + γ max
a′∈As′

Qn(s
′, a′))2]

≤ C2 + 2γC∥Q(n)∥∞ + γ2∥Q(n)∥2∞ ≤ A+B∥Q(n)∥2∞

2. SARSA

Rewrite a k-armed Bandit as an MDP in such a way that SARSA (Algorithm 20 with ϵn-greedy

policy updates and α(s, a) = 1
N(s,a)+1) corresponds to the ϵn-greedy algorithm introduced in

Chapter 1. Check that both algorithms are equivalent.

Solution:

We define the state space to be S = {1, T} where 1 is the first state, the initial distribution is

thus µ = δ1, and T is the terminal state.

The action space is defined to be A1 = {1, . . . , k} and AT = {N} and can be interpreted as we

play an arm between in 1, . . . , k in the state 1 and we do noting in the terminal state T .

Then we define the transition probabilities to be p({T}; {1}, a) = 1 for all a ∈ A1.

The reward set R is given by the set of all possible rewards of all k arms united with a terminal

reward {0} whenever we are in the terminal state T and play action N . I.e. the rewards are

defined to be independent of the states and whenever we play action At = a ∈ A1 the reward

is distributed as the rewards of arm a of the bandit, Rt+1 = R(a) ∼ Pa and whenever we play

action At = N the reward is defined to be Rt+1 = R(N) = 0.

We choose γ ∈ (0, 1) arbitrarily, as γ will be irrelevant in the algorithm. Now recall the SARSA

Algorithm with stepsizes chosen based on the visitation times and terminal states that are to be

passed, as stated below in Algorithm 1.

For the initialisation of Q and N nothing changes. As we consider ϵn-greedy policies, consider

a fixed sequence (ϵn)n∈IN0 and initialise π with any ϵ0-greedy policy, where we only have to

consider state 1 as the action in state T is always N with probability one. As Q ≡ 0 we choose

an arbitrary action (wlog action a = 1) with probability 1− ϵ0(k−1)
k and all other actions a′ ∈ A1

with probability ϵ0
k .

Next we enter the ’while not convergend’-loop and see that we initialise s always with 1, as we

choose µ = δ1. Then we choose a ∼ π(·|1) after the ϵ0-greedy policy defined above. As 1 is not
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Result: Approximation Q ≈ Q∗

Initialize Q(s, a) = 0 and N(s, a) = 0 for all (s, a) ∈ S ×A

Choose initial policy π.

while not converged do
Initialize s

Choose a ∼ π(· ; s)
while s not terminal do

Take action a, sample reward R(s, a) and next state s′.

Choose a′ ∼ π(· | s′).
Determine step size α.

Q(s, a) = Q(s, a) + α(R(s, a) + γQ(s′, a′)−Q(s, a))

N(s, a) = N(s, a) + 1

s = s′, a = a′

Choose policy π derived from updated Q-values.

end

end
Algorithm 1: SARSA

a terminal state we take the action we sampled and recive a reward R(1, a). Then we transit

in the terminal state s′ = T almost surely and choose action a′ = N almost surely and update

Q(1, a), using α = 1
N(1,a)+1 , and N(1, a). As s′ = T is a terminal state we update the policy π

as ϵ1-greedy policy and continue again with initialising s ∼ µ in the outer loop.

Observations:

• We only fulfill the ’while s not terminal’ condition once, i.e. this is not a real loop. Moreover

we choose always s′ = T and a′ = N .

• Q(T,N) is never updated and stays 0 forever, i.e. together with the first observation we

note that the term γQ(s′, a′) is zero forever.

• We only need to consider Q(s, a) and N(s, a) for s = 1, i.e. we can drop the dependence

on s.

• We only need a policy in the state s = 1, i.e. we will only wrtie π(·) as a probability

distribution of the possible arms.

• Sampling an action a after an ϵ-greedy policy is equivalent to sampling a uniform random

variable U ∼ U [0, 1] and play the greedy action whenever U > ϵ or a uniformly choosen

random action whenever U ≤ ϵ.

All in all the algorithm simplifies to the Bandit-SARSA algorithm below.

Finally we observe that this algorithm equals the ϵn-greedy algorithm from Chapter 1 of the

lecture, because for action an

Qnew(an) = Q(an) +
1

N(an) + 1
(R(an)−Q(an))

=
N(an)

N(an) + 1
Q(an) +

1

N(an) + 1
R(an).
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Result: Approximation Q ≈ Q∗

Initialize Q(a) = 0 and N(a) = 0 for all a ∈ {1, . . . , k}
Set n = 0

Set π(·) = δ1 (choose any arm)

while not converged do
Sample U ∼ U [0, 1]
if U ≤ ϵn then

Choose an uniformly in {1, . . . , k}
else

Choose an ∼ π(·)
end

Play arm an, observe reward R(an).

Determine stepsize α = 1
N(an)+1 .

Q(an) = Q(an) + α(R(an)−Q(an))

N(an) = N(an) + 1

Set policy π(·) as ϵn greedy policy over the Q-values.

n = n+ 1
end

Algorithm 2: Bandit-SARSA

With the memory trick this is equivalent to

Qnew(an) =
1

N(a) + 1

n∑
i=0

R(an)1{an=a},

which is the estimator of Q̂a of arm a in the ϵn-greedy algorithm.
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