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1. Sample based policy iteration without bounded rewards

Let the second moments of the rewards given a policy π ∈ ΠS exist, i.e.

Eπ
s [R

2
0] < ∞ ∀s ∈ S.

Show that the Theorems 4.5.1 and 4.5.2 still apply to this policy, so that the one-step policy

evaluation schemes from the lecture converge.

Solution:

The only place where we needed to assume bounded rewards in the proofs of the theorems was

when showing sups IE[ε
2
s(n) | Fn] ≤ A + B∥V (n)∥2∞ and sups,a IE[ε

2
s,a(n) | Fn] ≤ A + B∥Q(n)∥2∞

respectively. With the assumption of existing second moments and defining

C := sup
s∈S

Eπ
s [R

2
0] < ∞

we can proceed as in the lecture notes:

IE[ε2s(n)|Fn]

= IE[(rn + γVs′n(n))
2 | Fn]− 2IEπ

s [R0 + γVS1(n)]IE
π
s [rn + γVs′n(n) | Fn] + (IE[R0 + γVS1(n)])

2

= IEπ
s [(R0 + γVS1(n))

2]− 2(IEπ
s [R0 + γVS1(n)])

2 + (IEπ
s [R0 + γVS1(n)])

2

≤ IEπ
s [(R0 + γVS1(n))

2] = IEπ
s [R

2
0] + 2γIEπ

s [R0VS1(n))
2] + γ2IEπ

s [VS1(n)
2]

≤ C2 + 2γC∥V (n)∥∞ + γ2∥V (n)∥2∞ ≤ C2 + 2γC(1 + ∥V (n)∥2∞) + γ2∥V (n)∥2∞
= (C2 + 2γC) + (2γC + γ2)∥V (n)∥2∞

The case for Q(n) goes analogously save for the definition of C as the supremum over additio-

nally all a ∈ A and the usage of the tower property with given A1 = a inside the conditional

expectation.

2. Convergence theorem 4.3.8 under weaker assumptions

Show that the statement of Theorem 4.3.8 also holds if IE[εi(n) | Fn] ̸= 0 but instead satisfies

∞∑
n=1

αi(n)
∣∣IE[εi(n) | Fn]

∣∣ < ∞

almost surely for all coordinates i = 1, . . . , d. It is enough to prove an improved version of Lemma

4.4.4 where the condition IE[εn | Fn] = 0 is replaced with

∞∑
n=1

αn

∣∣IE[εn | Fn]
∣∣ < ∞. (1)
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Apply the Robbins-Siegmund theorem to W 2 and use that W ≤ 1 +W 2.

Solution:

IE
[
W 2

n+1

∣∣Fn

]
= IE

[
(1− αn)

2W 2
n + α2

nε
2
n + 2αn(1− αn)Wnεn

∣∣Fn

]
≤ (1− 2αn + α2

n)W
2
n + α2

nDn + 2αn(1− αn)WnIE
[
εn

∣∣Fn

]
≤ (1− 2αn + α2

n)W
2
n + α2

nDn + 2αn(1− αn)(1 +W 2
n)
∣∣IE[εn ∣∣Fn

]∣∣
≤ (1− 2αn + α2

n + 2αn

∣∣IE[εn ∣∣Fn

]∣∣− 2α2
n

∣∣IE[εn ∣∣Fn

]∣∣︸ ︷︷ ︸
≥0

)W 2
n

+ α2
nDn + 2αn

∣∣IE[εn ∣∣Fn

]∣∣− 2α2
n

∣∣IE[εn ∣∣Fn

]∣∣︸ ︷︷ ︸
≥0

≤ (1− an + bn)W
2
n + cn,

with an = 2αn, bn = α2
n + 2αn

∣∣IE[εn ∣∣Fn

]∣∣, and cn = α2
nDn + 2αn

∣∣IE[εn ∣∣Fn

]∣∣. Now the claim

follows from the Robbins-Siegmund Corollary 4.4.3.

3. n-step TD

a) Write pseudocode for n-step TD algorithms for evaluation of V π and Qπ and prove the

convergence by checking the n-step Bellman expectation equations

T πV (s) = IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)
]

and

T πQ(s, a) = IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)
]

and the conditions of Theorem 4.3.8 on the error term. Note that the algorithm only starts

to update after the MDP ran for n steps.

Solution: The algorithms are written down in Algorithm 1 and Algorithm 2.

Regarding convergence we have to check that the operators T1 and T2 are contractions and

that the error terms

εs(n) : = R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)

− IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)
]
and

εs,a(n) : = R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)

− IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)
]
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Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize V ≡ 0

Initialise s arbitrarily

while not converged do
Set s∗ = s

Initialise R = 0

for i = 0, . . . n− 1 do
a ∼ π(·; s)
Sample reward R(s, ai)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
s = s′

end

Determine stepsize α

Update V (s∗) = V (s∗) + α(R+ γnV (s)− V (s∗))

end
Algorithm 1: n-step TD for evaluation of V π

fulfill the conditions of Theorem 4.3.8. The conditions on the error terms are checked as

always. First, all appearing random variables are Fn+1-measurable and so the errors are

adapted. The conditional expectation is computed by using that given Fn, the expectation

gets taken, which yields 0. Finally, the second moments of the errors are estimated by the

second moments of the first terms and using boundedness of the rewards we deduce

IE[εs(n)
2|Fn] ≤ A1 +B1∥V (n)∥2∞ and

IE[εs,a(n)
2|Fn] ≤ A2 +B2∥Q(n)∥2∞

For the contractions we see that

∥T1(V1)− T1(V2)∥∞

= max
s∈S

|T1(V1)(s)− T1(V2)(s)|

= max
s∈S

|IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV1(Sn)
]

− IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV2(Sn)
]
|

≤ max
s∈S

IEπ
s

[
γn|V1(Sn)− V2(Sn)|

]
≤ γn∥V1 − V2∥∞

and analogously for T2.

b) Write pseudocode for an n-step SARSA control algorithm.
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Data: Policy π ∈ ΠS

Result: Approximation Q ≈ Qπ

Initialize Q ≡ 0

Initialise s, a arbitrarily

while not converged do
Set s∗ = s and a∗ = a

Initialise R = 0

for i = 0, . . . n− 1 do
Sample reward R(s, a)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
Sample a′ ∼ π(·|s′)
s = s′, a = a∗

end

Determine stepsize α

Update Q(s∗, a∗) = Q(s∗, a∗) + α(R+ γnQ(s, a)−Q(s∗, a∗))

end
Algorithm 2: n-step TD for evaluation of Qπ

Solution:

Algorithm 3 constitutes an n-step SARSA control algorithm.
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Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize Q, e.g. Q ≡ 0

Initialise s, a arbitrarily, e.g. uniform.

while not converged do
Set s∗ = s and a∗ = a

Initialise R = 0

Chose new policy π from Q (e.g. ϵ-greedy)

for i = 0, . . . n− 1 do
Sample reward R(s, a)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
Sample a′ ∼ π(·|s′)
s = s′, a = a′

end

Determine stepsize α

Update Q(s∗, a∗) = Q(s∗, a∗) + α(R+ γnQ(s, a)−Q(s∗, a∗))

end
Algorithm 3: n-step SARSA

5


