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1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient
descent method. Let F : R? — R be a function of the form F(z) = E[f(z, Z)] for some Z ~ p,
whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to
approximate the gradient of F' by V, f(z, Z;) with independent realisations Z; ~ u in each step,
leading to the following algorithm:

Data: Realisation of initial random variable Xy, stepsizes g
Result: Approximation X of a stationary point of F'
Set k=0

while not converged do
simulate Zy 1 ~ p independently

approximate the gradient V,F(X}) through
G = Vo f(Xk, Zgi1)
set Xp+1 = Xk — ar Gy

set k=k+1
end

return X = X,

Algorithm 1: Stochastic Gradient Descent

Assume the following;:
o Let (0, F, (Fr)ren, P) be a filtered probability space, where the filtration is defined by
Fi :=0(Xo, Zm,m < k) for Zy ~iq 1,

let F:R? = R, z+— E[f(x, Z)] for Z ~ ju be an L-smooth function for some L < 1, i.e.

IVF(z) = VF(y)|| < Lz —y|| Va,y € R’

and let F := inf cga F'(z) > —oo0,
let V. F(z) = E[V.f(x,Z)] and E[||V.f(z, Z)||?] < ¢ for some ¢ > 0 and all x € R?,

let (ax)ken be a sequence of Fy-adapted and strictly positive random variables, where

o0 [e.9]
E oy, = 0o and E i < oo
k=1 k=1

let X( be such that E[F(X()] < oo, and

let (X%)ren be the random variables generated by applying Stochastic Gradient Descent.



a) For all L-smooth functions f : R? — R it holds that

fle+y) < (@) + 5"V @)+ Z ol oy € R

Solution:
Let x,y € R? be fived. We define ¢(t) := f(x +ty) for all t € [0,1] and apply the chain rule
in order to derive

¢ (t) =y ' Vf(z+ty) Vtelo1].

By the fundamental theorem of calculus it follows
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where we have applied Cauchy-Schwarz followed by the L-smoothness of f.
Define M1 := V. F(Xy) — Vo f (Xk, Zk+1) and show that

E[My1|Fi] = 0 and E[|Mypa 2| < ¢ — V. F(X0)|? Vk € N.

Solution:
Since by definition of the filtration Xy, is Fi-measurable and Zyy1 is independent of Fr we

can compute
E[My11|F4] = VoF (Xe) = B[V (-, Zesn))(Xx) =0
and
E[|| M1 |1 Fx] = Vo F(X0)||? = 2E{VF (), Vaf (-, Zrs1))] (Xk)
+E[Vaf(, Zrt1)|(Xk)
e VLX)

Show that limy_, F' (X)) = Fso almost surely for some almost surely finite random variable.
Solution:
Using a) and b) we obtain (path-wise) that

F(Xk+1) = F(Xk - akvmf(Xka Zk-i—l))
< P(Xk) = (Vo F (Xk), Vo f(Xk, Zisa)) + ai%ﬂvxﬂxk, Zr)|?
= F(X}) — a|| Vo F(Xp)|I? + (Vo F(X3), Mg11)

L
+ i 5 (V2 F(X)|* = 2Va P (Xy), Miya) + [ M |F)



and therefore, using again that Xy is Fy-measurable,
L
E[F (X 1) = Ful Fi] < (F(Xk) = F) + ag e — ar|[ Vo F(X) |

Now a direct application of the Robbins-Siegmund Theorem 4.4.2. with Zy = F(Xy) — Fy,
Ap =0, By = a}le, and Oy = o ||V F(Xy)||? yields the assertion. All random variables
are positive because of the definition of Fy and the fact that all oy, > 0 by assumption and
the summation conditions of the theorem hold because of the assumptions on oy, justifying

its application.

Show that limy_ o || V2 F(X})||? = 0 almost surely.

Solution:

The application of the Robbins-Siegmund Theorem in part c) reveals that almost surely it
holds Y 3% o o || Vi F (Xg)||? < 00. Since S_5ear = oo almost surely, there can not exist
any € > 0 such that on a non-null set of Q it holds ||V, F(Xg(w))||?> > € for all k > k(w) >0

for some k(w). Thus almost surely
liminf |V, F(X%)| = 0.
k—o0

Now let w be a path on which the sum over ag||V.F(X})||? is finite and the sum over ay,

s infinite. Assume that
limsup ||V, F (Xk(w)|?> > €2 >0

k—o0
and consider two sub-sequences (m;(w))jen, (nj(w))jen, with mj(w) < nj(w) < mjy1(w)
such that
€
3 < IVaf(Xp()Il for m;(w) < k <nj(w)

and
IVaf @)l < 5 Jornj(w) < k < mjsa(@).

Such subsequences must exist, because we proved, that the limes inferior is zero. Moreover,
let j(w) € N be sufficiently large such that
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Using L-smoothness for all j > j(w) and m;(w) < m < nj(w) — 1 it holds true that
nj(w)—1

E[|VaF (X)) = VaF(Xn) [[Fnl@) < Y E[|VeF (Xpt1) = VaF (Xp) |1 F4] (@)

k=m
nj(w)
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k=m
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where we have used that |V, F(Xz)(w)|| > § for mj(w) <k < nj(w) — 1. This implies that

Ve (X (W) < B[V F (X, @) [ Fm] (@) + 5 < %

Wl ™

and therefore ||V F(Xp(w))|| < % for all m > mj(w). This is in contradiction to

limsup ||V, F (X (w))[|* > €.

k—o0

Thus, the assertion holds.



