

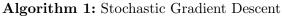
Prof. Dr. Leif Döring		Reinforcement Learning
Benedikt Wille	7. Exercise Sheet - Solutions	08.04.2025

1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient descent method. Let $F : \mathbb{R}^d \to \mathbb{R}$ be a function of the form $F(x) = \mathbb{E}[f(x, Z)]$ for some $Z \sim \mu$, whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to approximate the gradient of F by $\nabla_x f(x, Z_i)$ with independent realisations $Z_i \sim \mu$ in each step, leading to the following algorithm:

Data: Realisation of initial random variable X_0 , stepsizes α_k

Result: Approximation X of a stationary point of FSet k = 0while not converged do simulate $Z_{k+1} \sim \mu$ independently approximate the gradient $\nabla_x F(X_k)$ through $G_k = \nabla_x f(X_k, Z_{k+1})$ set $X_{k+1} = X_k - \alpha_k G_k$ set k = k + 1end return $X := X_k$



Assume the following:

• Let $(\Omega, \mathcal{F}, (\mathcal{F}_k)_{k \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space, where the filtration is defined by

$$\mathcal{F}_k := \sigma(X_0, Z_m, m \le k) \text{ for } Z_k \sim_{\text{i.i.d}} \mu,$$

• let $F : \mathbb{R}^d \to \mathbb{R}, x \mapsto \mathbb{E}[f(x, Z)]$ for $Z \sim \mu$ be an L-smooth function for some L < 1, i.e.

$$\|\nabla F(x) - \nabla F(y)\| \le L \|x - y\| \quad \forall x, y \in \mathbb{R}^{d}$$

and let $F_* := \inf_{x \in \mathbb{R}^d} F(x) > -\infty$,

- let $\nabla_x F(x) = \mathbb{E}[\nabla_x f(x, Z)]$ and $\mathbb{E}[\|\nabla_x f(x, Z)\|^2] \le c$ for some c > 0 and all $x \in \mathbb{R}^d$,
- let $(\alpha_k)_{k\in\mathbb{N}}$ be a sequence of \mathcal{F}_k -adapted and strictly positive random variables, where

$$\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

- let X_0 be such that $\mathbb{E}[F(X_0)] < \infty$, and
- let $(X_k)_{k\in\mathbb{N}}$ be the random variables generated by applying Stochastic Gradient Descent.

a) For all L-smooth functions $f:\mathbb{R}^d\to\mathbb{R}$ it holds that

$$f(x+y) \le f(x) + y^T \nabla f(x) + \frac{L}{2} \|y\|^2 \quad \forall x, y \in \mathbb{R}^d.$$

Solution:

Let $x, y \in \mathbb{R}^d$ be fixed. We define $\phi(t) := f(x+ty)$ for all $t \in [0,1]$ and apply the chain rule in order to derive

$$\phi'(t) = y^T \nabla f(x + ty) \quad \forall t \in [0, 1].$$

By the fundamental theorem of calculus it follows

$$\begin{split} f(x+y) - f(x) &= \phi(1) - \phi(0) = \int_0^1 \phi'(t) dt = \int_0^1 y^T \nabla f(x+ty) dt \\ &= \int_0^1 y^T \nabla f(x) dt + \int_0^1 y^T (\nabla f(x+ty) - \nabla f(x)) dt \\ &\leq y^t \nabla f(x) + \int_0^1 \|y\| \cdot \|\nabla f(x+ty) - \nabla f(x)\| dt \\ &\leq y^T \nabla f(x) + \|y\| \int_0^1 Lt \cdot \|y\| dt \\ &= y^T \nabla f(x) + \frac{L}{2} \|y\|^2, \end{split}$$

where we have applied Cauchy-Schwarz followed by the L-smoothness of f.

b) Define $M_{k+1} := \nabla_x F(X_k) - \nabla_x f(X_k, Z_{k+1})$ and show that

$$\mathbb{E}[M_{k+1}|\mathcal{F}_k] = 0 \text{ and } \mathbb{E}[\|M_{k+1}\|^2|\mathcal{F}_k] \le c - \|\nabla_x F(X_k)\|^2 \quad \forall k \in \mathbb{N}.$$

Solution:

Since by definition of the filtration X_k is \mathcal{F}_k -measurable and Z_{k+1} is independent of \mathcal{F}_k we can compute

$$\mathbb{E}[M_{k+1}|\mathcal{F}_k] = \nabla_x F(X_k) - \mathbb{E}[\nabla_x f(\cdot, Z_{k+1})](X_k) \stackrel{ass.}{=} 0$$

and

$$\mathbb{E}[\|M_{k+1}\|^2 |\mathcal{F}_k] = \|\nabla_x F(X_k)\|^2 - 2\mathbb{E}[\langle \nabla_x F(\cdot), \nabla_x f(\cdot, Z_{k+1})\rangle](X_k)$$
$$+ \mathbb{E}[\|\nabla_x f(\cdot, Z_{k+1})](X_k)$$
$$\overset{ass.}{\leq} c - \|\nabla_x F(X_k)\|^2.$$

c) Show that $\lim_{k\to\infty} F(X_k) = F_{\infty}$ almost surely for some almost surely finite random variable. Solution:

Using a) and b) we obtain (path-wise) that

$$F(X_{k+1}) = F(X_k - \alpha_k \nabla_x f(X_k, Z_{k+1}))$$

$$\leq F(X_k) - \alpha_k \langle \nabla_x F(X_k), \nabla_x f(X_k, Z_{k+1}) \rangle + \alpha_k^2 \frac{L}{2} \| \nabla_x f(X_k, Z_{k+1}) \|^2$$

$$= F(X_k) - \alpha_k \| \nabla_x F(X_k) \|^2 + \alpha_k \langle \nabla_x F(X_k), M_{k+1} \rangle$$

$$+ \alpha_k^2 \frac{L}{2} (\| \nabla_x F(X_k) \|^2 - 2 \langle \nabla_x F(X_k), M_{k+1} \rangle + \| M_{k+1} \|^2)$$

and therefore, using again that X_k is \mathcal{F}_k -measurable,

$$\mathbb{E}[F(X_{k+1}) - F_* | \mathcal{F}_k] \le (F(X_k) - F_*) + \alpha_k^2 \frac{L}{2} c - \alpha_k \| \nabla_x F(X_k) \|^2.$$

Now a direct application of the Robbins-Siegmund Theorem 4.4.2. with $Z_k = F(X_k) - F_*$, $A_k = 0$, $B_k = \alpha_k^2 \frac{L}{2}c$, and $C_k = \alpha_k ||\nabla_x F(X_k)||^2$ yields the assertion. All random variables are positive because of the definition of F_* and the fact that all $\alpha_k > 0$ by assumption and the summation conditions of the theorem hold because of the assumptions on α_k , justifying its application.

d) Show that $\lim_{k\to\infty} \|\nabla_x F(X_k)\|^2 = 0$ almost surely. Solution:

The application of the Robbins-Siegmund Theorem in part c) reveals that almost surely it holds $\sum_{k=0}^{\infty} \alpha_k \|\nabla_x F(X_k)\|^2 < \infty$. Since $\sum_{k=0}^{\infty} \alpha_k = \infty$ almost surely, there can not exist any $\epsilon > 0$ such that on a non-null set of Ω it holds $\|\nabla_x F(X_k(\omega))\|^2 > \epsilon$ for all $k \ge \bar{k}(\omega) \ge 0$ for some $\bar{k}(\omega)$. Thus almost surely

$$\liminf_{k \to \infty} \|\nabla_x F(X_k)\| = 0.$$

Now let ω be a path on which the sum over $\alpha_k \|\nabla_x F(X_k)\|^2$ is finite and the sum over α_k is infinite. Assume that

$$\limsup_{k \to \infty} \|\nabla_x F(X_k(\omega))\|^2 \ge \epsilon^2 > 0$$

and consider two sub-sequences $(m_j(\omega))_{j\in\mathbb{N}}$, $(n_j(\omega))_{j\in\mathbb{N}}$, with $m_j(\omega) < n_j(\omega) < m_{j+1}(\omega)$ such that

$$\frac{\epsilon}{3} < \|\nabla_x f(X_k(\omega))\| \text{ for } m_j(\omega) \le k < n_j(\omega)$$

and

$$\|\nabla_x f(X_k(\omega))\| \le \frac{\epsilon}{3} \quad for \ n_j(\omega) \le k < m_{j+1}(\omega)$$

Such subsequences must exist, because we proved, that the limes inferior is zero. Moreover, let $\overline{j}(\omega) \in \mathbb{N}$ be sufficiently large such that

$$\sum_{k=m_{\bar{j}(\omega)}}^{\infty} \alpha_k(\omega) \|\nabla_x F(X_k(\omega))\|^2 \leq \frac{\epsilon^2}{9L}$$

Using L-smoothness for all $j \geq \overline{j}(\omega)$ and $m_j(\omega) \leq m \leq n_j(\omega) - 1$ it holds true that

$$\mathbb{E}[\|\nabla_x F(X_{n_j(\omega)}) - \nabla_x F(X_m)\||\mathcal{F}_m](\omega) \leq \sum_{k=m}^{n_j(\omega)-1} \mathbb{E}[\|\nabla_x F(X_{k+1}) - \nabla_x F(X_k)\||\mathcal{F}_k](\omega)$$

$$\leq L \sum_{k=m}^{n_j(\omega)} \mathbb{E}[\|X_{k+1} - X_k\||\mathcal{F}_k](\omega)$$

$$= \sum_{k=m}^{n_j(\omega)} \alpha_k(\omega)\mathbb{E}[\|\nabla_x f(X_k, Z_{k+1})\||\mathcal{F}_k]$$

$$= \sum_{k=m}^{n_j(\omega)} \alpha_k(\omega)\|\nabla_x F(X_k(\omega)\|)$$

$$\leq L \frac{3}{\epsilon} \sum_{k=m}^{n_j(\omega)} \alpha_k(\omega)\|\nabla_x F(X_k(\omega)\|^2$$

$$\leq \frac{\epsilon}{3},$$

where we have used that $\|\nabla_x F(X_k)(\omega)\| > \frac{\epsilon}{3}$ for $m_j(\omega) \le k \le n_j(\omega) - 1$. This implies that

$$\|\nabla_x F(X_m(\omega))\| \le \mathbb{E}[\|\nabla_x F(X_{n_j(\omega)})\| |\mathcal{F}_m](\omega) + \frac{\epsilon}{3} \le \frac{2\epsilon}{3}$$

and therefore $\|\nabla_x F(X_m(\omega))\| \leq \frac{2\epsilon}{3}$ for all $m \geq m_j(\omega)$. This is in contradiction to

$$\limsup_{k \to \infty} \|\nabla_x F(X_k(\omega))\|^2 \ge \epsilon^2.$$

Thus, the assertion holds.