
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 01.04.20257. Exercise Sheet

For this assignment, knowledge from lectures 1 to 16 is assumed.

1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient

descent method. Let F : Rd → R be a function of the form F (x) = E[f(x, Z)] for some Z ∼ µ,

whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to

approximate the gradient of F by ∇xf(x, Zi) with independent realisations Zi ∼ µ in each step,

leading to the following algorithm:

Data: Realisation of initial random variable X0, stepsizes αk

Result: Approximation X of a stationary point of F

Set k = 0

while not converged do
simulate Zk+1 ∼ µ independently

approximate the gradient ∇xF (Xk) through

Gk = ∇xf(Xk, Zk+1)

set Xk+1 = Xk − αkGk

set k = k + 1
end

return X := Xk
Algorithm 1: Stochastic Gradient Descent

Assume the following:

• Let (Ω,F , (Fk)k∈N,P) be a filtered probability space, where the filtration is defined by

Fk := σ(X0, Zm,m ≤ k) for Zk ∼i.i.d µ,

• let F : Rd → R, x 7→ E[f(x, Z)] for Z ∼ µ be an L-smooth function for some L < 1, i.e.

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rd

and let F∗ := infx∈Rd F (x) > −∞,

• let ∇xF (x) = E[∇xf(x, Z)] and E[∥∇xf(x, Z)∥2] ≤ c for some c > 0 and all x ∈ Rd,

• let (αk)k∈N be a sequence of Fk-adapted and strictly positive random variables, where

∞∑
k=1

αk = ∞ and

∞∑
k=1

α2
k < ∞

• let X0 be such that E[F (X0)] < ∞, and

1



• let (Xk)k∈N be the random variables generated by applying Stochastic Gradient Descent.

a) For all L-smooth functions f : Rd → R it holds that

f(x+ y) ≤ f(x) + yT∇f(x) +
L

2
∥y∥2 ∀x, y ∈ Rd.

b) Define Mk+1 := ∇xF (Xk)−∇xf(Xk, Zk+1) and show that

E[Mk+1|Fk] = 0 and E[∥Mk+1∥2|Fk] ≤ c− ∥∇xF (Xk)∥2 ∀k ∈ N.

c) Schow that limk→∞ F (Xk) = F∞ almost surely for some almost surely finite random varia-

ble.

d) Show that limk→∞ ∥∇xF (Xk)∥2 = 0 almost surely.

2. *Programming task: Q-Learning versions

The aim of this exercise is to implement alternatives to Q-learning that can counteract certain

effects of Q-learning, which we will study in more detail in subsequent exercises. To this end,

implement

• SARSA (Algorithm 20),

• Double Q-learning (Algorithm 21),

• Clipped Double Q-learning (Algorithm 23), and

• Truncated Double Q-learning (Algorithm 22).

For each of these algorithms (including Q-learning), in addition to the behaviour policy mode

from the last exercise sheet, implement ϵ-greedy exploration with both a constant ϵ and ϵ de-

creasing with a rate function. Hint: You may use the same helper function that determines the

stepsizes for implementing ϵ-greedy exploration.

3. *Programming task: Actor-Critic revisited

The aim of this exercise is to create a general actor-critic method (cf. Algorithm 11). Implement

an algorithm that combines a policy evaluation scheme with a policy improvement scheme (so

far, we have only used the greedy policy derived from the policy evaluation). Compare this

algorithm with different choices of critics to the other stochastic control algorithms we have

implemented, analyzing their performance and behavior in various environments.

4. *Programming task: Exploration matters

The aim of this exercise is to observe how different exploration schemes affect the performance

of Q-learning. Test at least a uniformly random behavior policy and ϵ-greedy exploration with a

fixed high rate, a fixed low rate, and a rate of 1
n on the following environments: multi-step bandits

with 10 branches, 2 sequential steps each, and normally distributed arms. The first environment

should resemble a regular multi-armed bandit with one possible action at each step, while the

2



second should have 10 possible actions at each step. In both environments, one arm should have

a mean of 0.1 with variance 1, and all other arms should have a mean of -0.1 with variance 1.

Analyze how these effects relate to the concepts of exploration and exploitation discussed in the

bandit context.

5. *Programming task: Robust RL

The aim of this exercise is to demonstrate an effect of SARSA compared to Q-learning in the

context of robust RL, where exploration can be costly. For instance, imagine a robot learning

to drive a car, where every crash requires purchasing a new car. In such scenarios, algorithms

like SARSA, which are designed to be more cautious, can be advantageous. To illustrate this,

visually compare the estimated policies of Q-learning and SARSA during training on a windy

GridWorld. The grid is 12 × 4, with the start state in the top left and the goal state (reward

100) in the top right. Along the top line are cliff states (reward -100), and the default reward is

-1. Experiment with different wind strengths (probabilities) for being pushed upwards towards

the cliff and variations of the reward structure. Analyze why different policies may emerge

during optimization based on the algorithm update rules. Formulate a hypothesis on the general

behavior and comparability of the algorithms in environments with very low rewards, and explain

the differences through the algorithmic distinctions between Q-learning and SARSA.

Start GoalCliff

Abbildung 1: Visualization of the windy cliff walk game.

6. *Programming task: The Bias Problem

The aim of this exercise is to observe a well-known effect of Q-learning and determine whether

the alternative versions implemented in Exercise 2 can counteract it. The issue arises from the

fact that E[max1≤i≤nXi] ≥ max1≤i≤n E[Xi], leading to a positive bias in the estimator for the

Bellman operator used in Q-learning. Implement metrics to measure the summed total bias,

the summed squared total bias, and the summed bias and summed squared bias at selected

state-action pairs. Compare the overestimation effect in Q-learning to its alternative versions

and provide a theoretical explanation for why these algorithms exhibit less overestimation bias.

While overestimation bias would not be problematic if it were uniform across all state-action

pairs, identify factors influencing the magnitude of overestimation bias in Q-learning and the

extent to which the alternative algorithms reduce it. Use this knowledge to construct examples of

3



multi-step bandits and Grid Worlds where Q-learning performs poorly, the alternative algorithms

perform poorly, and where both types of algorithms fail.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

April 8, 2025, at Mathelounge in B6 B301.

4


