
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 01.04.20256. Exercise Sheet - Solutions

1. Proof of Lemma 3.4.6 for T -step MDPs

Prove Lemma 3.4.6 from the lecture by comparing with the discounted counterpart.

The following holds for the optimal time-state value function and the optimal time-state-action

value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As Q

∗
t (s, a) for all t ≤ T ,

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s
′) for all t < T

In particular, V ∗ and Q∗ satisfy the following Bellman optimality equations (backwards recur-

sions):

V ∗
t (s) = max

a∈As

{
r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
t+1(s

′)
}
, s ∈ S,

and

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s

′, a′), s ∈ S, a ∈ As,

for all t < T .

Solution:

The Bellmann optimality equations are direct consequences of i) and ii) by simply plugging i)

into ii) and vice-versa, so we will proceed by simply showing i) and ii) in this order. The proof is

very similar to the proof of Theorem 3.1.23 but using the slightly more special definitions of Qt

and Vt as well as directly using only non-stationary policies. First we want to employ Proposition

3.4.4 to obtain

sup
πt

V π
t (s) = max

a∈As

Qπ
t (s, a) ∀t ≤ T.

”
≥“ is trivial since the supremum over all kernels πt at time t is of course bigger than the

max over the deterministic kernels πt choosing arm a at time t. The counterpart follows with

Proposition 3.4.4 from the inequality

V π
t (s) =

∑
a∈As

πt(a ; s)Q
π
t (s, a) ≤ max

a∈As

Qπ
t (s, a)

∑
a∈As

πt(a ; s)︸ ︷︷ ︸
≤1

= max
a∈As

Qπ
t (s, a).

1



Because of this and the fact that Qπ
t (s, a) does not depend on πt for any π ∈ ΠT

t we obtain

max
a∈As

Q∗
t (s, a) = max

a∈As

sup
π∈ΠT

t

Qπ
t (s, a)

= sup
π∈ΠT

t+1

max
a∈As

Qπ
t (s, a)

= sup
π∈ΠT

t+1

sup
πt∈Πt

t

V π
t (s)

= sup
π∈ΠT

t

V π
t (s)

= V ∗
t (s)

for all t < T . Conversely, using the exact same trick as in the proof of Theorem 3.1.23 for the

justification of the change of sum and supremum for all t < T we obtain by Proposition 3.4.4:

Q∗
t (s, a) = sup

π∈ΠT
t

Qπ
t (s, a) = sup

π∈ΠT
t

(
r(s, a) +

∑
s′∈S

p(s′; s, a)V π
t+1(s

′)
)

= r(s, a) +
∑
s′∈S

p(s′; s, a) sup
π∈ΠT

t

V π
t+1(s

′)

= r(s, a) +
∑
s′∈S

p(s′; s, a)V ∗
t+1(s

′).

2. Example: T -step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(Dt = d) = pd with p0 = p2 = 1
4 , p1 = 1

2 .

Suppose the revenue function f , ordering cost function o and storage cost function h are given

by

f : IN0 → IR, x 7→ 9x,

o : IN0 → IR, x 7→ 2x,

h : IN0 → IR, x 7→ 2 + x.

a) Set up the transition matrix p(st+1; st, at) in a table, such that every st + at maps to the

probability to land in st+1, and the reward function r(st, at, st+1) for this example.

Solution:

The transition matrix is given as follows

(s+ a)\s′ 0 1 2 3

0 1 0 0 0

1 3
4

1
4 0 0

2 1
4

1
2

1
4 0

3 0 1
4

1
2

1
4

The reward function R(st, at, st+1) = f(st + at − st+1)− o(at)− h(at + st) is given by

R(st, at, st+1) = 9(st + at − st+1)− 2at − 2− (st + at) = 8st + 6at − 9st+1 − 2.

2



b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?

Solution:

The expected reward is given by

r(s, a) =
∑
r∈R

rp(S × {r} ; s, a) =
∑
r∈R

∑
s′∈S

p({s′} × {r} ; s, a)r

=
∑
s′∈S

p(s′; s, a)R(s, a, s′),

because the reward is deterministic for given s, a, s′. The reward table is then

s\a 0 1 2 3

0 −2 7
4 1 −2

1 15
4 3 0 x

2 5 2 x x

3 4 x x x

c) Suppose now you can play a 3-step MDP, hence you can order ice cream 3 times in t = 0, 1, 2.

What is the optimal strategy for this finite time horizion MDP? Calculate the optimal

state value, state-action value functions and the optimal policies using the greedy policy

improvement algorithm from the lecture.

Hint: Use backward induction.

Solution:

We have as inition condition V ∗
3 ≡ 0 and Q∗

2 ≡ r. We follow from Q∗
2 that the optimal

policy is

π∗
2(1; 0) = 1, π∗

2(0; 1) = 1, π∗
2(0; 2) = 1, π∗

2(0; 3) = 1.

The value function V ∗
2 (s) = maxaQ

∗
2(s, a), are the red marked values in the reward tabel of

b).

It follows by

Q∗
1(s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
2 (s

′)

that Q∗
1 is given by

s\a 0 1 2 3

0 −1
4

61
16

67
16

9
4

1 93
16

99
16

17
4 x

2 131
16

25
4 x x

3 33
4 x x x

We follow from Q∗
1 that the optimal policy is

π∗
1(2; 0) = 1, π∗

1(1; 1) = 1, π∗
1(0; 2) = 1, π∗

1(0; 3) = 1.

The value function V ∗
1 (s) = maxaQ

∗
1(s, a) are the red numbers in the table. For the last

timestep:

Q∗
0(s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
1 (s

′)

3



that Q∗
0 is given by

s\a 0 1 2 3

0 35
26

413
64

231
32

203
32

1 605
64

295
32

331
32 x

2 359
32

331
32 x x

3 395
32 x x x

We follow from Q∗
1 that the optimal policy is

π∗
0(2; 0) = 1, π∗

0(2; 1) = 1, π∗
0(0; 2) = 1, π∗

0(0; 3) = 1.

Finally, we have that the red marked numbers in the last table are the optimal value function

V ∗
0 of this MDP.

3. First visit Monte Carlo

Recall the first visit Monte Carlo Algorithm (14) from the lecture notes. Rewrite the estimate

Vn(st) to argue how we can apply the law of large numbers to show convergence (Hint: Use the

strong Markov property).

Now consider the same algorithm without the if-condition in the for-loop. This algorithm is

called every visit Monte Carlo algorithm (see Algorithm 1). Argue why we cannot apply the law

of large numbers.

Data: Policy π ∈ ΠS , initial condition µ

Result: Approximation Ṽ ≈ V π

Initialize V0 ≡ 0 and N ≡ 1

n = 0

while not converged do
n = n+ 1

Sample T ∼ Geo(1− γ).

Sample s0 from µ.

Generate trajectory (s0, a0, r0, s1, ...) until time horizon 2T using policy π.

for t = 0, 1, 2, ..., T do

v =
∑T+t

k=t rk

Vn(st) =
1

N(st)+1v +
N(st)−1
N(st)

Vn−1(st)

N(st) = N(st) + 1

end

end

Set Ṽ = Vn.
Algorithm 1: Every visit Monte Carlo policy evaluation of V π

Solution:

First, not that due to the strong Markov property we have that

Pπ
µ(St = st, At = at, Rt = rt, . . . , St+T , AT+t, Rt+T = rt+T |S0 = s0, A0 = a0, . . . , St = st, At = at)

=Pπ
µ(R0 = rt, . . . , RT = rt+T |S0 = st, A0 = at)

4



and thus in every algorithm step it holds v ∼
∑T

k=0Rk given (S0, A0) = (st, at) so that, denoting

vn as the realization of v in step n we see that these random variables are independent and

identically distributed with expected value

Eπ
µ[vn] = Eπ

st

[
T∑

k=0

Rk

]
= V π(st).

Applying the memory trick backwards we can thus write

Vn(st) =
1

N(st) + 1
vn +

N(st)− 1

N(st)
Vn−1(st) =

1

N(s)

N(s)∑
k=1

vk,

which converges to V π due to the law of large numbers.

For the every visit Monte Carlo algorithm the independence of the vn is not guaranteed, as in the

event of multiple visits the random variables from the same rollout will be used multiple times.

Thus, the law of large numbers can not be applied.

5


