
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 25.03.20256. Exercise Sheet

For this assignment, knowledge from lectures 1 to 14 is assumed.

1. Proof of Lemma 3.4.6 for T -step MDPs

Prove Lemma 3.4.6 from the lecture by comparing with the discounted counterpart.

The following holds for the optimal time-state value function and the optimal time-state-action

value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As Q

∗
t (s, a) for all t < T ,

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s
′) for all t < T

In particular, V ∗ and Q∗ satisfy the following Bellman optimality equations (backwards recur-

sions):

V ∗
t (s) = max

a∈As

{
r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
t+1(s

′)
}
, s ∈ S,

and

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s

′, a′), s ∈ S, a ∈ As,

for all t < T .

2. Example: T -step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(Dt = d) = pd with p0 = p2 = 1
4 , p1 = 1

2 .

Suppose the revenue function f , ordering cost function o and storage cost function h are given

by

f : IN0 → IR, x 7→ 9x,

o : IN0 → IR, x 7→ 2x,

h : IN0 → IR, x 7→ 2 + x.

a) Set up the transition matrix p(st+1; st, at) in a table, such that every st + at maps to the

probability to land in st+1, and the reward function r(st, at, st+1) for this example.

b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?

1



c) Suppose now you can play a 3-step MDP, hence you can order ice cream 4 times in t = 0, 1, 2.

What is the optimal strategy for this finite time horizion MDP? Calculate the optimal

state value, state-action value functions and the optimal policies using the optimal control

algorithm from the lecture.

Hint: Use backward induction.

3. First visit Monte Carlo

Recall the first visit Monte Carlo Algorithm (14) from the lecture notes. Rewrite the estimate

Vn(st) to argue how we can apply the law of large numbers to show convergence (Hint: Use the

strong Markov property).

Now consider the same algorithm without the if-condition in the for-loop. This algorithm is

called every visit Monte Carlo algorithm (see Algorithm 1). Argue why we cannot apply the law

of large numbers.

Data: Policy π ∈ ΠS , initial condition µ

Result: Approximation Ṽ ≈ V π

Initialize V0 ≡ 0 and N ≡ 1

n = 0

while not converged do
n = n+ 1

Sample T ∼ Geo(1− γ).

Sample s0 from µ.

Generate trajectory (s0, a0, r0, s1, ...) until time horizon 2T using policy π.

for t = 0, 1, 2, ..., T do

v =
∑T+t

k=t rk

Vn(st) =
1

N(st)+1v +
N(st)−1
N(st)

Vn−1(st)

N(st) = N(st) + 1

end

end

Set Ṽ = Vn.
Algorithm 1: Every visit Monte Carlo policy evaluation of V π

4. *Programming task: Sample-based algorithms

The aim of this task is to implement the main algorithms from chapter 4 of the lecture. To this

end, include the following algorithms:

a) The first visit Monte Carlo policy evaluation methods (Algorithms 14 and 15) as well as

every visit versions for both V π and Qπ (cf. Algorithm 1).

b) The totally asynchronous policy evaluation methods (Algorithms 17 and 18).

c) The Q-learning algorithm (Algorithm 18) with fixed behaviour policies.

2



To support these implementations, write a function that schedules the chosen stepsizes, incor-

porating both constant stepsizes and stepsizes decreasing with a predetermined rate function.

5. *Programming task: The cost of not knowing the game

The aim of this task is to compare implemented algorithms with their counterparts that assume

knowledge of the game dynamics and among each other. For Q-learning, use several different

exploration methods. Implement a mechanism to evaluate the current policy after m steps of the

algorithm: pause training, evaluate the policy for k timesteps, and then resume training. Compare

the algorithms in terms of average scores, correct action rates (the percentage of actions chosen

correctly), Q-function values at the start state, and runtime. Additionally, investigate whether

the backpropagation effect occurs in sample-based algorithms.

6. *Programming task: Do we need 1/n?

Experiment with different stepsize schedules for Q-learning across various Grid World environ-

ments. Investigate the short- and long-term effects of these schedules and analyze why certain

behaviors emerge. Develop an intuition for the appropriate stepsize schedule needed for different

environmental variations, considering factors such as convergence speed, stability, and final per-

formance. Lay a special focus on comparing your results with the rate of 1
n that is always used

in convergence proofs.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

April 01, 2025, at Mathelounge in B6 B301.

3


