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1. Policy evaluation

Consider Algorithm 7 from the lecture. In Theorem 3.3.2 we proved convergence for this algo-

rithm if γ < 1. Now assume γ = 1 and set ∆ = 2ϵ in the initialisation and choose termination

condition ∆ < ϵ. Give an example such that Algorithm 7 does not converge using γ = 1. You

are allowed to initialise the value function V arbitrarily.

Solution:

For example define S = {0, 1} and A = {A,B}. Furthermore, we assume that the reward Rt is

deterministic given St, At and given by the function R(s, a) with values

R(0, A) = 1, R(0, B) = 0

R(1, A) = 0, R(1, B) = 1.

The transition probabilities are independent of the reward given in the following table

p(s′, s, a) 0 1

0, A 1 0

0, B 0 1

1, A 1 0

1, B 0 1

We define the policy π by

π(A; 0) = 0, π(B; 0) = 1,

π(A; 1) = 1, π(B; 1) = 0

and initialise the value functions V = Vnew by V (0) = 1, V (1) = 0. Furthermore, we choose

ϵ < 1.

We start with the first loop and calculate

Vnew(s) =
∑
a∈A

π(a; s)
(
r(s, a) +

∑
s′∈S

p(s′; s, a)V (s)),

i.e we get

Vnew(0) = π(B; 0)(R(0, B) + p(1; 0, B)V (1)) = 1(0 + 1 · 0) = 0

Vnew(1) = π(A; 1)(R(1, A) + p(0; 1, A)V (0)) = 1(0 + 1 · 1) = 1.
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We see that ∆ = 1 and thus we set V = Vnew and continue with net next loop:

Vnew(0) = π(B; 0)(R(0, B) + p(1; 0, B)V (1)) = 1(0 + 1 · 1) = 1

Vnew(1) = π(A; 1)(R(1, A) + p(0; 1, A)V (0)) = 1(0 + 1 · 0) = 0,

which results in our initial value function from the beginning. Hence, we see directly that the

value iteration algorithm alternates between these two value functions and never converges.

2. Convergence of the iterative policy evaluation with totally asynchronous updates

Recall Algorithm 8 from the lecture. We aim to prove convergence of the algorithm (without

termination) to V π. Therefore, label the state space S by s1, . . . , sK and define

T π
s V (s′) =

T πV (s) : s = s′

V (s) : s ̸= s′

Define the composition T
π
: U → U, T

π
(v) :=

(
T π
sK

◦ · · · ◦ T π
s1

)
(v) on the space of all functions

U = {u : S → IR} equipped with the supremum-norm.

a) Argue why T
π
is different from the Bellman operator T π.

Solution:

Applying the Bellman operator T π updates the function v in every state s using the fixed

values v(s) for all s. More precisely, we store all values v(s) for all s ∈ S and calculate

vnew(s) =
∑
a∈A

π(a; s)
(
r(s, a) +

∑
s′∈S

p(s′; s, a)v(s′)
)
,

FOR ALL s ∈ S and afterwards we set T πv = vnew.

If we apply the operator T
π
, we first apply the operator T π

s1: For s1 we get a new va-

lue vnew(s1) =
∑

a∈A π(a; s1)
(
r(s1, a) +

∑
s′∈S p(s′; s1, a)v(s

′)
)

and for all other states

we change nothing. We set v1(s1) = vnew(s1), v1(sk) = v(sk) for all k > 1 and conti-

nue with T π
s2. The next operator T π

s2 applies the Bellman operator at state s2 and leave

all other variables untouched. The fundamental change is now that we apply the Bell-

man operator at state s2 for the vector v1 and not for v, i.e. we have vnew(s2) =∑
a∈A π(a; s2)

(
r(s2, a)+

∑
s′∈S p(s′; s2, a)v1(s

′)
)
! Hence, vnew(s2) from the Bellman opera-

tor is different from vnew(s2) which we get from the operator T
π
. We set v2(sk) = v1(sk) for

all k ̸= 2 and v2(s2) = vnew(s2). We continue after this scheme and see that the operators

are different.

b) Show that V π is a fixed point of the operator T
π
.

Solution:

We have that T π
si only changes the i-th coordinate of the vector v ∈ IR|S|. By induction, we

show that (T
π
)(V π) = V π, by proving that V π is a fixed point in every coordinate s ∈ S.
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So for s1 we have

(T
π
)(V π)(s1) = (T π

sK
◦ · · · ◦ T π

s1)(V
π)(s1)

= T π
s1(V

π)(s1)

= T π(V π)(s1)

= V π(s1),

because V π is a fixed point with respect to the Bellman operator. We see also from this

calculation, that (T
π
)(V π) = (T π

sK
◦ · · · ◦ T π

s1)(V
π) = (T π

sK
◦ · · · ◦ T π

s2)(V
π).

Now we assume that (T
π
)(V π) = (T π

sK
◦ · · · ◦ T π

si+1
)(V π), and (T

π
)(V π)(si)V

π(si) for fixed

i < K, then for i+ 1 we get

(T
π
)(V π)(si+1) = (T π

sK
◦ · · · ◦ T π

s1)(V
π)(si+1)

= (T π
sK

◦ · · · ◦ T π
si+1

)(V π)(si+1)

= (T π
si+1

)(V π)(si+1)

= T π(V π)(si+1)

= V π(si+1).

This proves the claim.

c) Prove that T
π
is a contraction on (U, || · ||∞).

Solution:

Consider u and v in U , then

∥(T π
sK

◦ · · · ◦ T π
s1)(u)− (T π

sK
◦ · · · ◦ T π

s1)(v)∥∞

= max
i=1,...,K

{∣∣∣(T π
sK

◦ · · · ◦ T π
s1)(u)(si)− (T π

sK
◦ · · · ◦ T π

s1)(v)(si)
∣∣∣}

= max
i=1,...,K

{∣∣∣(T π
si ◦ · · · ◦ T

π
s1)(u)(si)− (T π

si ◦ · · · ◦ T
π
s1)(v)(si)

∣∣∣}
= max

{
|T π

s1(u)(s1)− T π
s1(v)(s1)|, |T

π
s2(ũ

(1))(s2)− T π
s2(ṽ

(1))(s2)|, . . . ,

|T π
sK

(ũ(K−1))(sK)− T π
sK

(ṽ(K−1))(sK)|
}
,

where ũ(i) := (T π
si ◦ · · · ◦ T

π
s1)(u). Then we can continue

∥(T π
sK

◦ · · · ◦ T π
s1)(u)− (T π

sK
◦ · · · ◦ T π

s1)(v)∥∞

= max
{
|T π(u)(s1)− T π(v)(s1)|, |T π(ũ(1))(s2)− T π(ṽ(1))(s2)|, . . . ,

|T π(ũ(K−1))(sK)− T π(ṽ(K−1))(sK)|
}

≤ max
{
γ∥u− v∥∞, γ∥ũ(1) − ṽ(1)∥∞, . . . , γ∥ũ(K−1) − ṽ(K−1)∥∞

}
.

By induction we will show that ∥ũ(i) − ṽ(i)∥∞ ≤ ∥u− v∥∞ for all i = 1, . . . ,K − 1.
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First for i = 1 we have

∥ũ(1) − ṽ(1)∥∞ = ∥T π
s1(u)− T π

s1(v)∥∞

= max
i=1,...,K

{
|T π

s1(u)(si)− T π
s1(v)(si)|

}
= max

{
|T π(u)(s1)− T π(v)(s1)|, |u(s2)− v(s2)|, . . . , |u(sK)− v(sK)|

}
≤ max

{
γ∥u− v∥∞, ∥u− v∥∞, . . . , ∥u− v∥∞|

}
≤ ∥u− v∥∞.

Now we assume that ∥ũ(i) − ṽ(i)∥∞ ≤ ∥u− v∥∞ for all i < k ≤ K − 1. For k we follow then

∥ũ(k) − ṽ(k)∥∞ = ∥(T π
sk

◦ · · · ◦ T π
s1)(u)− (T π

sk
◦ · · · ◦ T π

s1)(v)∥∞

= ∥(T π
sk
)(ũ(k−1))− (T π

sk
)(ṽ(k−1))∥∞

= max
i=1,...,K

{
|(T π

sk
)(ũ(k−1))(si)− (T π

sk
)(ṽ(k−1))(si)|

}
= max

{
max
i ̸=k

{
|(ũ(k−1))(si)− (ṽ(k−1))(si)||

}
, |T π(ũ(k−1))− T π(ṽ(k−1))|

}
≤ max

{
∥ũ(k−1) − ṽ(k−1)∥∞, γ∥ũ(k−1) − ṽ(k−1)∥∞

}
= max

{
∥u− v∥∞, γ∥u− v∥∞

}
≤ ∥u− v∥∞.

Overall we follow that

∥(T π
sK

◦ · · · ◦ T π
s1)(u)− (T π

sK
◦ · · · ◦ T π

s1)(v)∥∞

≤ max
{
γ∥u− v∥∞, γ∥ũ(1) − ṽ(1)∥∞, . . . , γ∥ũ(K−1) − ṽ(K−1)∥∞

}
≤ γ∥u− v∥∞.

3. Exact policy iteration

Consider two types of costumers, L for low and H for high, shopping in a shopping center. Each

quarter the manager divides all costumers into these classes based in their purchase behavior in

the previous quarter. The manager wishes to determine to which classes of costumers he should

send quarterly catalogs. Sending a catalog costs him $15 per costumer. If a costumer received

a catalog at the beginning of the quarter and is in class L at the subsequent quarter, then the

expected purchase is $20, and $10 if he did not receive a catalog. If a costumer is in class H at

the subsequent quarter and received a catalog, then the expected purchase is $50, and $25 if he

did not. The decision weather or not to send a catalog to a customer also affects the customer’s

classification in the subsequent quarter: If a costumer is in class L at the start of the present

quarter, then the probability to stay in class L in the subsequent quarter is 0.3 if he receives a

catalog and 0.5 if he does not. For the class H costumer the probability to stay in H for the

subsequent quarter is 0.8 if he receives a catalog and 0.4 if he does not.
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Assume that the discount rate is 0.9 and the manager wants to maximize the expected total

discounted reward.

a) Formulate this problem as discounted infinte-horizon Markov decision model.

Solution:

• S = {L,H} is the state space,

• A = {C,NC} is the action space, where C stands for catalog and NC for no catalog,

• R = {5, 10, 35, 25} is the reward space,

• the transition function p({s′, r′}; s, a) is given by

(s, a)\(s′, r′) L, 5 L, 10 H, 35 H, 25 L, 35 L, 25 H, 5 H, 10

L,C 0.3 0 0.7 0 0 0 0 0

L,NC 0 0.5 0 0.5 0 0 0 0

H,C 0.2 0 0.8 0 0 0 0 0

H,NC 0 0.6 0 0.4 0 0 0 0

For example if costumer L receives a catalog ((s, a) = (L,C)) then he stays in class L

with probability 0.3 and thus has an expected purchase of 25− 15 = 5 ((s′, r′) = (L, 5))

or he changes to class H with probability 0.7 and then has an expected purchase of

50−15 = 35 ((s′, r′) = (H, 35)). All other combinations of (s′, r′) have zero probability.

b) What is the expected one-step reward r(s, a) for every state-action pair? Define the statio-

nary policy which has greatest one-step reward.

Solution:

The one step reward is defined by r(s, a) =
∑

s′,r′ r
′p({s′, r′}; s, a). So we have

r(L,C) = 0.3 · 5 + 0.7 · 35 = 26, r(L,NC) = 0.5 · 10 + 0.5 · 25 = 17.5

r(H,C) = 0.2 · 5 + 0.8 · 35 = 29, r(H,NC) = 0.6 · 10 + 0.4 · 25 = 16

Thus, the stationary policy

π(C;L) = 1, π(NC;L) = 0

π(C;H) = 1, π(NC;H) = 0,

maximizes the one-step reward.

c) Find an optimal policy using the greedy exact policy iteration (algorithm 11) to find the

optimal policy. Start with the stationary policy from b).

Solution:

We choose π0 = π from b) and first have to calculate V π0
= (I − γPπ0)−1rπ0 By the

definition of π0 we see that rπ0 =
(∑

a∈A π0(a ; s)r(s, a)
)
s∈S

is given by

rπ0 =

(
26

29

)
.
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For Pπ0(s, s′) =
∑

a∈A π0(a ; s)p(s′ ; s, a) we have

Pπ0 =

(
0.3 0.7

0.8 0.2

)
.

Thus,

(I − γPπ0)−1 =

(
1− 0.9 · 0.3 −0.9 · 0.7
−0.9 · 0.8 1− 0.9 · 0.2

)−1

=
1

0.73 · 0.82− (−0.27) · (−0.72)

(
0.82 0.27

0.72 0.73

)

=

(
2.03 0.67

1.78 1.81

)
.

Now we can caluclate V π0
by

V π0
=

(
2.03 0.67

1.78 1.81

)(
26

29

)
=

(
72.21

98.77

)
.

We continue with the next step in the algorithm and calculate Qπ0
(s, a) =

r(s, a) + γ
∑

s′ p(s
′; s, a)V π0

(s′):

Qπ0
(L,C) = 26 + 0.9(0.3 · 72.21 + 0.7 · 98.77) = 107.72

Qπ0
(L,NC) = 17.5 + 0.9(0.5 · 72.21 + 0.5 · 98.77) = 94.44

Qπ0
(H,C) = 29 + 0.9(0.2 · 72.21 + 0.8 · 98.77) = 113.11

Qπ0
(H,NC) = 16 + 0.9(0.6 · 72.21 + 0.4 · 98.77) = 90.55

We follow the policy

π1(C;L) = 1, π1(NC;L) = 0

π1(C;H) = 1, π1(NC;H) = 0,

and see that π0 = π1. Hence, the algorithm is terminated and the optimal policy is π0 = π1.
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