
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 11.03.20254. Exercise Sheet

For this assignment, knowledge from lectures 1 to 10 is assumed.

1. Bellman expecation operator.

Recall the Bellman expectation operator for a stationary policy π ∈ Πs:

(T πu)(s) =
∑
a∈A

r(s, a)π(a ; s) + γ
∑
s′∈S

Pπ(S1 = s′|S0 = s,A0 = a)u(s′)

=
∑
a∈A

π(a ; s)
(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)u(s′)
)

Show that we can rewrite the fixed point equation in vector notation, i.e. check that indeed

T πV = V is equivalent to rπ + γPπV = V , where

Pπ =
(∑

a∈A
π(a ; s)p(s′ ; s, a)

)
(s,s′)∈S×S

rπ =
(∑

a∈A
π(a ; s)r(s, a)

)
s∈S

.

2. Markov Decision Process 1

A rental car agency serves two cities with one office in each. The agency has M cars in total.

At the start of each day, the manager must decide how many cars to move from one office to

the other to balance stock. Let fi(q) for i = 1, 2 denote the probability that the daily demand

for cars to be picked up at city i and returned to city i equals q. Let gi(q), i = 1, 2, denote

the probability that the daily demand for “one-way” rentals from city i to the other equals q.

Assume that all rentals are for one day only, that it takes one day to move cars from city to

city to balance stock, and, if demand exceeds availability, customers go elsewhere. The economic

parameters include a cost of K per car for moving a car from city to city to balance stock, a

revenue of R per car for rentals returned to the rental location and R per car for one-way rentals.

Formulate this problem as discounted infinite-horizon Markov decision model.

3. Markov Decision Process 2

Two identical machines are used in a manufacturing process. From time to time, these machines

require maintenance which takes three weeks. Maintenance on one machine costs c, per week

while maintenance on both machines costs c2 per week. Assume c2 > 2c. The probability that

a machine breaks down if it has been i periods since its last maintenance is pi,with pi non-

decreasing in i. Maintenance begins at the start of the week immediately following breakdown,

1



but preventive maintenance may be started at the beginning of any week. The decision maker

must choose when to carry out preventive maintenance, if ever, and, if so, how many machines

to repair. Assume the two machines fail independently.

a) What is the significance of the condition c2 > 2c?

b) Formulate this problem as discounted infinite-horizon Markov decision model.

c) Provide an educated guess about the form of the optimal policy when the decision maker’s

objective is to minimize expected operating cost.

4. Banach fixed-point Theorem

Prove Banach fixed-point theorem (Theorem 3.1.17 in the lecture notes).

5. *Programming task: Two environments

The aim of this task is to implement two environments: Grid World (as introduced in the lecture)

and a Multi-Step Bandit. Each environment should be encapsulated in a class with:

• A function for game dynamics. Additionally to the next state and reward obtained it should

also return if the game terminated or not.

• A function estimating state-action rewards using a Monte Carlo estimator.

• A reset mechanism: after reaching a terminal state, restart from the initial state.

For future exercises, ensure your implementation includes transition probabilities, start state,

terminal states, allowed actions, and expected rewards as class attributes. Additionally, for Grid

World, implement a function that visualizes a given policy. Your implementation should support

at least normally and binomially distributed random rewards.

a) Implement the standard Grid World and variants to explore different effects. Your imple-

mentation should allow configuring:

• Grid size (m× n),

• Reward structure, assigning deterministic or stochastic rewards to specific cells (e.g.,

Goal, Default, Bomb).

• Wall behavior: choose whether actions leading outside the grid result in staying put or

are prohibited.

• Windy environment: with some probability, the agent moves in a predefined unintended

direction.

• Slippery environment: with some probability, the agent moves in an unintended direc-

tion adjacent to the chosen one.

• Random noise: with some probability, the agent moves in a completely random direc-

tion, where the probabilities for each directions can be specified.

b) Implement a multi-step bandit with the following structure:

2



• A starting state s0 with k available actions (branches).

• Each branch bi consists of mi sequential steps (i = 1, . . . , k). The agent transitions

deterministically along the branch.

• At each step sbi,j , the agent chooses from kbi,j possible actions (j = 1, . . . ,mi).

Allow specifying default rewards and custom deterministic or random rewards per action

at each state.

Hint: RL environments are very similar to bandits but require an additional state input and must

return the next state along with the reward for each action.

S

B G

Figure 1: 4×4 Grid World environment. The agent starts at S (bottom-left). The goal G (top-right)

gives a reward upon reaching it. Stepping on B (bomb) results in a penalty. The agent can move in

four directions unless restricted by walls.

s0
r = 0r = 0

k1 N (µ1, σ
2
1)

actions

s1 s2

k2 N (µ2, σ
2
2)

actions

r = 0

Figure 2: Multi-step bandit environment where the agent starts at the initial state s0 and can choose

between three branches: left, right, or down. The downward branch leads to a terminal state with

zero reward. The left and right branches each consist of two steps. The first step yields zero reward,

while the second step offers ki action choices, each associated with a reward sampled from a normal

distribution N (µi, σ
2
i ). The indices i = 1, 2 correspond to the left and right branches, respectively.

6. *Programming task: Hard-coding Policy evaluation and the optimal policy

Develop a hard-coded method to determine the optimal policy for two settings: a vanilla Grid

World (without wind, slipping, or noise, only start and goal) and an arbitrary multi-step bandit.

Implement this approach twice—first using expected rewards, then using Monte Carlo (MC)

estimation. Extend your implementation to evaluate arbitrary policies by calculating their value

functions, again with and without MC estimators. Consider the algorithmic complexity, identify

”
worst-case“-environments, and think about how long it would take you to find the best policy

knowing the reward structure while comparing your approach to your algorithm’s.

3



7. *Programming task: The best, the worst, uniform, and random policies

Analyze the impact of wind, slipping, and random noise on a 4 × 4 Grid World with arbitrary

layouts, ensuring at least one bomb state. Identify what you consider the best and worst policies

for each case and test them against randomly generated policies and a uniformly random policy.

Evaluate the discounted rewards after t = 16 rounds and, for stochastic policies, average over

N = 1000 runs to compare performance.

Hint: A similar functional approach as in the bandit setup can be applied, only that now you

need to keep track of the current state. The policy selects an action based on the current state,

after which the environment returns a reward and the next state. This next state is then used

to determine the subsequent action. Ensure that the policy-environment interaction follows this

sequence in each step to accurately reflect the dynamics of the multi-state environment.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

March 18, 2025, at Mathelounge in B6 B301.

4


