
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 04.03.20253. Exercise Sheet

For this assignment, knowledge from lectures 1 to 8 is assumed.

1. Markov Chains

Suppose that (St)t∈N is a Markov Chain with values in some finite set S on a probability space

(Ω,F ,P) and denote by P the transition matrix. Assume further that P(Sn = s′) > 0 for some

n ∈ N and s′ ∈ S and define the probability measure P̃ = P(· | Sn = s′). Prove that the shifted

process (S̃t)t∈N = (St+n)t∈N is again a Markov chain with transition matrix P .

2. Proof of Theorem 3.1.3

Complete the Proof of Theorem 3.1.3 in the lecture:

a) Show that defining PT on the singletons

PT ({(s0, a0, r0, . . . , sT , aT , rT )}) := µ({s0}) · π0({a0} ; s0) ·
T∏
i=1

p({(si, ri−1)} ; si−1, ai−1)

· πi({ai} ; s0, a0, . . . , ai−1, si) · p(S × {rT }; sT , aT ).

yields a probability measure.

b) Check the claimed conditional probability identity

Pπ
µ(St+1 = st+1, Rt = rt |St = s,At = a) = p(st+1, rt ; s, a).

where we assume that Pπ
µ(St = s,At = a) > 0.

3. Probabilistic interpretation of MDPs

Use the formal definition of the stochastic process (S,A,R) to check that

p(s′; s, a) = P(St+1 = s′ |St = s,At = a),

p(r; s, a) = P(Rt = r|St = s,At = a),

r(s, a) = E[Rt |St = s,At = a],

r(s, a, s′) = E[Rt |St = s,At = a, St+1 = s′]

holds if the events in the condition have positive probability, for any t ∈ IN0.
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4. Proof of Proposition 3.1.13

Prove that if π ∈ ΠS then (St, At, Rt)t∈N satisfies the Markov reward process property

P((St+1, At+1, Rt+1) = (st+1, at+1, rt+1) | (St, At) = (st, at), . . . , (S0, A0) = (s0, a0))

= P((St+1, At+1, Rt+1) = (st+1, at+1, rt+1) | (St, At) = (st, at))

with time-homogeneous state/reward transition probabilities

p(s.a),(S′,a′,r′) = p(s′, r; s, a)π(a′; s′)

The solution to the following exercise has to be turned in until 18.03.25. Groups of up

to three people are allowed.

5. *Programming task: Bandits

The aim of this exercise is to compare different bandit algorithms from the lecture. Your task is

to run appropriate simulations and present meaningful plots that support your interpretations.

Try to compare as many algorithms as possible, but at a minimum, include the following:

• Explore-then-commit

• ϵ-greedy

• UCB

• Boltzmann Exploration

• A policy gradient method

a) What are the typical regret rates observed for each algorithm? Based on this, which algo-

rithm performs best? Provide an intuitive explanation of how these rates arise and what

constants should appear in front of them.

b) Explain the effects of the exploration-exploitation tradeoff and committal behavior. Use

appropriate graphs to illustrate these effects in your data. Discuss the differences between

the algorithms in this context.

c) In the bandit setting, what objectives besides regret minimization could be relevant (espe-

cially in the RL context)? Compare the algorithms based on these alternative objectives

using appropriate metrics. Provide intuitive explanations of how these metrics arise and

determine which algorithm performs best according to them. Consider the number of cor-

rectly chosen actions, estimates of arm means, and the probabilities of choosing the optimal

arms over time as well as at the end of the time horizon.

d) Use the optimal parameters from the lecture and think about how to estimate these pa-

rameters numerically for each algorithm. Compare your results in short to your findings

in a)–c). For which algorithms does choosing the optimal parameters require
”
cheating“?

How difficult is it to numerically determine the correct parameters? Based on your findings,

which algorithm do you conclude is the best?
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Remember to

• Indicate which Python version and packages you used.

• Label your graphs clearly.

• Specify the (hyper)parameter values chosen for your experiments and algorithms.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

March 11, 2025, at Mathelounge in B6 B301.
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