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1. Upper bound on Qa(t) for many samples

Suppose v is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm
Qu(t) < Qu + A, with probability 1 — 8, given that T,(t) > 260/,

Solution: ’

Proof: Consider w.l.o.g. that P (Ta(t) = n) >0 foralln € {1,...,t — (k—1)}. (UCB chooses
each of the k — 1 suboptimal arms at least once in the beginning). First we can observe that

T.(t) > 21%(21/5) s equivalent to A, > 21%%1(&)/6), so we will now consider the probability of

Qa(t) — Qq > 21%(&)/5). Then, considering the intersection with the condition To(t) = n for
somen <t — (k—1) yields
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Note that a conditional probability is still a probability measure so we can use the normal Hoeff-

dings inequality in the last step.



Furthermore, we obtain that
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where we used the definition of conditional expectation and that P(AN B) = P(B) —P(A°N B).

. Regret bounds for UCB on o-subgaussian bandit models

For o-subgaussian bandit models the UCB exploration bonus is modified as
oo, T,(t) =0,
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RO Ta(t) # 0.

Check that the regret bound in Theorem 1.3.8 using § = # changes to
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in Theorem 1.3.9.
Solution:

The general idea of the proof of 1.3.8 does not change. We start by defining G, in the same way
except that now
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The proof that G,, C H,, works exactly the same using the modified notion of G,,. Similarly,
P(GS) < nod still holds. We then choose m = {%—‘ in order to assure
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By Hoeffdings inequality for o-subgaussian random variables we obtain similarly to 1.3.8 that

P(GS,,) < exp(—msAi) and finally the regret bound in the exercise. As in 1.5.9, rewriting
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and optimizing over A leads to the alternative regret bound stated in the exercise.

. Best Baseline

The variance of a random vector X is defined by to be V[X] := E[||X||3] — ||E[X]||3. Show by
differentiation that
Er, [ X a| |V 1og 7o (A)]3]
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is the baseline that minimises the variance of the unbiased estimators

by =

(Xa —b)Viog(me(A)), A~ my,
of V.J(6).

Solution:

We have
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where we used the baseline trick in the last equation. We define f(A) = ||V log(mg(A))]||2 to have

a better overview. Then
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We calculate the first derivative as
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Solving for the root gives
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which is a minimum, as the second derivative 21K [f(A)Q} > 0 almost surely. Plugging in the

definition of f proves the claim.



