
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 04.03.20252. Exercise Sheet - Solutions

1. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

Solution:

Proof: Consider w.l.o.g. that Pπ
(
Ta(t) = n

)
> 0 for all n ∈ {1, . . . , t− (k − 1)}. (UCB chooses

each of the k − 1 suboptimal arms at least once in the beginning). First we can observe that

Ta(t) > 2 log(1/δ)
∆2

a
is equivalent to ∆a >

√
2 log(1/δ)

Ta(t)
, so we will now consider the probability of

Q̂a(t) − Qa ≥
√

2 log(1/δ)
Ta(t)

. Then, considering the intersection with the condition Ta(t) = n for

some n ≤ t− (k − 1) yields

Pπ
(
Q̂a(t)−Qa ≥

√
2 log(1/δ)

Ta(t)
∩ (Ta(t) = n)

)
= Pπ

( 1

Ta(t)

t∑
i=1

Xi1{Ai=a} −Qa ≥

√
2 log(1/δ)

Ta(t)
∩ (Ta(t) = n)

)

= Pπ
( 1

n

t∑
i=1

Xi1{Ai=a} −Qa ≥
√

2 log(1/δ)

n
∩ (Ta(t) = n)

)

= Pπ
( 1

n

t∑
i=1

Xi1{Ai=a} −Qa ≥
√

2 log(1/δ)

n

∣∣Ta(t) = n
)
Pπ(Ta(t) = n)

≤ δPπ(Ta(t) = n).

Note that a conditional probability is still a probability measure so we can use the normal Hoeff-

dings inequality in the last step.
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Furthermore, we obtain that

Pπ
((

Q̂a(t) < Qa +∆a

)∣∣∣(Ta(t) >
2 log(1/δ)

∆2
a

))
≥ Pπ

(
Q̂a(t)−Qa <

√
2 log(1/δ)

Ta(t)

∣∣∣(Ta(t) >
2 log(1/δ)

∆2
a

))

= Pπ
(
Q̂a(t)−Qa <

√
2 log(1/δ)

Ta(t)

∣∣∣ t−(k−1)⊎
n=⌈ 2 log(1/δ)

∆2
a

⌉

(
Ta(t) = n

))

≥

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Q̂a(t)−Qa <

√
2 log(1/δ)

n ∩ (Ta(t) = n)
)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)

=

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ(Ta(t) = n)− Pπ

(
Q̂a(t)−Qa ≥

√
2 log(1/δ)

n ∩ (Ta(t) = n)
)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)

≥

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ(Ta(t) = n)− δPπ(Ta(t) = n)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)
= 1− δ,

where we used the definition of conditional expectation and that P(A∩B) = P(B)− P(Ac ∩B).

2. Regret bounds for UCB on σ-subgaussian bandit models

For σ-subgaussian bandit models the UCB exploration bonus is modified as

UCBa(t) :=

{ ∞, Ta(t) = 0,

Q̂a(t) +

√
2σ2 log(1δ )

Ta(t)
, Ta(t) ̸= 0.

Check that the regret bound in Theorem 1.3.8 using δ = 1
n2 changes to

Rn(π) ≤ 3
∑
a∈A

∆a + 16σ2 log(n)
∑

a:Qa ̸=Q∗

1

∆a
,

and that this leads to

Rn(π) ≤ 8σ
√
Kn log(n) + 3

∑
a∈A

∆A
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in Theorem 1.3.9.

Solution:

The general idea of the proof of 1.3.8 does not change. We start by defining Gm in the same way

except that now

G2,m :=

ω : Q̄(a)
m (ω) +

√
2σ2 log(1δ )

m
< Qa1

 .

The proof that Gm ⊆ Hm works exactly the same using the modified notion of Gm. Similarly,

P(Gc
1) ≤ nδ still holds. We then choose m =

⌈
2σ2 log(1/δ)

1/4∆2
a

⌉
in order to assure

∆a −

√
2σ2 log(1δ )

m
≥ 1

2
∆a.

By Hoeffdings inequality for σ-subgaussian random variables we obtain similarly to 1.3.8 that

P(Gc
2,m) ≤ exp(−m∆2

a
8 ) and finally the regret bound in the exercise. As in 1.3.9, rewriting

Rn(π) ≤ n∆+ 3
∑
a∈A

∆a +
16Kσ2 log(n)

∆

and optimizing over ∆ leads to the alternative regret bound stated in the exercise.

3. Best Baseline

The variance of a random vector X is defined by to be V[X] := IE[||X||22] − ||E[X]||22. Show by

differentiation that

b∗ =
IEπθ

[XA||∇ log πθ(A)||22]
IEπθ

[||∇ log πθ(A)||22]
is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of ∇J(θ).

Solution:

We have

V
(
(XA − b)∇ log(πθ(A))

)
= IE

[
(XA − b)2||∇ log(πθ(A))||22

]
−

∥∥∥IE[(XA − b)∇ log(πθ(A))
]∥∥∥2

2

= IE
[
(XA − b)2||∇ log(πθ(A))||22

]
−

∥∥∥IE[XA∇ log(πθ(A))
]∥∥∥2

2
,

where we used the baseline trick in the last equation. We define f(A) = ||∇ log(πθ(A))||2 to have

a better overview. Then

V
(
(XA − b)∇ log(πθ(A))

)
= IE

[
(XA − b)2f(A)2

]
−
∥∥∥IE[XA∇ log(πθ(A))

]∥∥∥2
2

= IE
[
X2

Af(A)2
]
− 2bIE

[
XAf(A)2

]
+ b2IE

[
f(A)2

]
−
∥∥∥IE[XA∇ log(πθ(A))

]∥∥∥2
2
.
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We calculate the first derivative as

∂V
(
(XA − b)∇ log(πθ(A))

)
∂b

= −2IE
[
XAf(A)2

]
+ 2bIE

[
f(A)2

]
.

Solving for the root gives

b∗ =
IE
[
XAf(A)2

]
IE
[
f(A)2

] ,

which is a minimum, as the second derivative 2IE
[
f(A)2

]
≥ 0 almost surely. Plugging in the

definition of f proves the claim.
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