FAKULTAT FUR WIRTSCHAFTSINFORMATIK
UND WIRTSCHAFTSMATHEMATIK

UNIVERSITAT
Yy MANNHEIM

Prof. Dr. Leif Déring Reinforcement Learning
Benedikt Wille 2. Exercise Sheet 25.02.2025

For this assignment, knowledge from lectures 1 to 6 is assumed.

1. Upper bound on Qa(t) for many samples

Suppose v is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Qa(t) < Qq + A, with probability 1 — 4, given that T,(t) > 21%(31/5).

2. Regret bounds for UCB on o-subgaussian bandit models

For o-subgaussian bandit models the UCB exploration bonus is modified as

oo, Tu(t)=0,

UCBa(t> = { 20_2 log(%)

Qa(t) + TAONE

T,(t) # 0.

Check that the regret bound in Theorem 1.3.8 using § = # changes to

1
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and that this leads to

R, (m) < 8c+/Knlog(n)+3 Z Ay

acA
in Theorem 1.3.9.

3. Best Baseline
The variance of a random vector X is defined by to be V[X] := IE[||X||3] — ||E[X]||3. Show by

differentiation that

I, [Xa||V1og 79 (A)]3]

by =
Er, |V log me(A)][3]

is the baseline that minimises the variance of the unbiased estimators
(X4 —b)Viog(mg(A)), A~ my,

of V.J(0).



4. *Programming task: Algorithms, algorithms, algorithms

The aim of this task is to implement the remaining bandit algorithms from the lecture. To this

end, implement the following algorithms and versions of the algorithms:

a) Greedy: Implement the purely greedy algorithm, the e-greedy algorithm with fixed €, and
the e-greedy algorithm with rates ¢; decreasing in time.
b) UCB: Implement the UCB algorithm as presented in the lecture, and the version adapted

to o-subgaussian bandits.

¢) Boltzmann exploration: Implement the simple Boltzmann exploration, the version with
the Gumbel trick, and a version allowing arbitrary distributions (at least Cauchy, Beta,
Betaprime, Chi, see e.g. scipy.stats) instead of Gumbel. Additionally, implement a version

where

A C
Atwargr&a{{Qa(t—l)—f— T,a(t_l)Za},

where Z, are independently identically standard Gumbel and C € R is a parameter.

d) Policy gradient: Implement the policy gradient method with and without the baseline trick.
Use the softmax-distributions as family of probability distributions to optimize over. Its
probability weights are defined as

mo(a) == %
> _p—1€xp(0p)

Hint: Structurally, the implementation for the algorithms should not differ too much from the

. ac A 0eRA

ETC algorithm, which you already implemented last week, if you followed the given hints. Essen-
tially you need to only think about how to initialize certain objects you need and how to perform

one given step of the algorithm at a time.

5. *Programming task: Optimal parameters

Simulate a 5-armed Bernoulli bandit with random means and play the bandit n = 10000 times
with each of the algorithms from exercise 4. Whenever the lecture specifies them, use the optimal
parameters (even if they are model-dependent). In all other cases think about compute-efficient
ways to numerically determine or search for the best parameters. Average your results over

N = 1000 iterations of the experiment and plot the following:

a) the regrets over time, including a shaded area around the curve indicating the 95-percent

confidence intervals, and
b) boxplots of the following data at the end of the time-horizon n:
i) the real means of the arms versus each algorithm’s estimates,
ii) the probabilities for playing each of the arms, and

iii) the regrets.
Hint: You can use the structure from Exercise Sheet 1 and implement new plot functions.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on
March 04, 2025, at Mathelounge in B6 B301.



