
Prof. Dr. Leif Döring Reinforcement Learning

Benedikt Wille 25.02.20252. Exercise Sheet

For this assignment, knowledge from lectures 1 to 6 is assumed.

1. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

2. Regret bounds for UCB on σ-subgaussian bandit models

For σ-subgaussian bandit models the UCB exploration bonus is modified as

UCBa(t) :=

{ ∞, Ta(t) = 0,

Q̂a(t) +

√
2σ2 log(1δ )

Ta(t)
, Ta(t) ̸= 0.

Check that the regret bound in Theorem 1.3.8 using δ = 1
n2 changes to

Rn(π) ≤ 3
∑
a∈A

∆a + 16σ2 log(n)
∑

a:Qa ̸=Q∗

1

∆a
,

and that this leads to

Rn(π) ≤ 8σ
√

Kn log(n) + 3
∑
a∈A

∆A

in Theorem 1.3.9.

3. Best Baseline

The variance of a random vector X is defined by to be V[X] := IE[||X||22] − ||E[X]||22. Show by

differentiation that

b∗ =
IEπθ

[XA||∇ log πθ(A)||22]
IEπθ

[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of ∇J(θ).
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4. *Programming task: Algorithms, algorithms, algorithms

The aim of this task is to implement the remaining bandit algorithms from the lecture. To this

end, implement the following algorithms and versions of the algorithms:

a) Greedy: Implement the purely greedy algorithm, the ϵ-greedy algorithm with fixed ϵ, and

the ϵ-greedy algorithm with rates ϵt decreasing in time.

b) UCB: Implement the UCB algorithm as presented in the lecture, and the version adapted

to σ-subgaussian bandits.

c) Boltzmann exploration: Implement the simple Boltzmann exploration, the version with

the Gumbel trick, and a version allowing arbitrary distributions (at least Cauchy, Beta,

Betaprime, Chi, see e.g. scipy.stats) instead of Gumbel. Additionally, implement a version

where

At ∼ argmax
a∈A

{
Q̂a(t− 1) +

√
C

Ta(t− 1)
Za

}
,

where Za are independently identically standard Gumbel and C ∈ R is a parameter.

d) Policy gradient: Implement the policy gradient method with and without the baseline trick.

Use the softmax-distributions as family of probability distributions to optimize over. Its

probability weights are defined as

πθ(a) :=
exp(θa)∑K
b=1 exp(θb)

, a ∈ A, θ ∈ RA.

Hint: Structurally, the implementation for the algorithms should not differ too much from the

ETC algorithm, which you already implemented last week, if you followed the given hints. Essen-

tially you need to only think about how to initialize certain objects you need and how to perform

one given step of the algorithm at a time.

5. *Programming task: Optimal parameters

Simulate a 5-armed Bernoulli bandit with random means and play the bandit n = 10000 times

with each of the algorithms from exercise 4. Whenever the lecture specifies them, use the optimal

parameters (even if they are model-dependent). In all other cases think about compute-efficient

ways to numerically determine or search for the best parameters. Average your results over

N = 1000 iterations of the experiment and plot the following:

a) the regrets over time, including a shaded area around the curve indicating the 95-percent

confidence intervals, and

b) boxplots of the following data at the end of the time-horizon n:

i) the real means of the arms versus each algorithm’s estimates,

ii) the probabilities for playing each of the arms, and

iii) the regrets.

Hint: You can use the structure from Exercise Sheet 1 and implement new plot functions.

The solution to the theoretical exercises will be discussed in the exercise class in B5 on

March 04, 2025, at Mathelounge in B6 B301.
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