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1. The Regret - Part 1

Recall Definitions 1.2.1 and 1.2.6 from the lecture. Suppose v is a bandit model and (m;),_,

seeey Tl

a learning strategy. Then the regret is defined by
n
R, (m) ==nQ — E, !ZX,:] , neN,
t=1

where Q, := [*°_xP,,(dx) the expected reward of the best arm a, = argmax,Qq.

a) Suppose a two-armed bandit with @1 = 1 and Q2 = —1 and a learning strategy 7 given by

01, teven,
Tt —
5% t odd.

Calculate the regret R, (m) for all n € IN.
Solution:
If n € IN s even, then

Rn(w):nQ*_EW[ZXt] :n*l—(g(—l)—gl) —n (1)
t<n
and if n € IN is odd, then
R, (7) =nQx —]EW[ZXJ

t<n

—(n—1)Q. — JE”[ > Xt} + Qs — ET[X,)]

t<n—1
= Rooa(m) +1- (-1)
(zl)n—l—l—l—l—lzn—i—l

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all n > 5.
Solution:

Consider for example the 3-armed bandit with Q1 = 1,Q2 = —1,Q3 = 0 and a policy ™ with
M =m9 =0, w3 =203, @ =0 Vt>4.
Then for all m > 4 we have

Ry(n) = nQ. — E” [Z Xt}

t<n

:n*1—<(—1)+(—1)+0+gl) —n+2—(n—3)=5.
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c) Show for all learning strategies 7 that R, (7) > 0 and limsup,, ., =%~ < oo.
Solution:
Claim: for all learning strategies m that Ry(m) > 0 and limsup,,_, . R"TEW) < 00.

Proof: Fix a learning strategy w. Then for the first Claim

Rp(7) = nQ, — E” [Z Xt]

t<n

—nQ. - > E"| X,
t<n

=nQ.— Y. Y E [th{At:a}}
t<n acA

=nQ. — > Y PT(A = a)E [Xt‘At - a}
t<n acA

=nQ.— > Y P (A =0a)Qu
t<n a€A

>nQ.— Y Y PT(A =a)Q.
t<n acA

=nQs — nQx

=0,

where we used the formular for conditional expectation in the forth line, the definition of
Qa in the fifth line and Qo < Q4 for all a € A in the inequality.

For the second Claim we define Q_, := minge 4 Qo. Then it holds similar to the calculation

above
R(m) =nQu— > > P (A =a)Qq
t<n acA
<0 - Y Y F U =aQ..
t<n acA
=nQy — nQ_s.
Thus
lim sup Rn(ﬂ) < limsup M =Qs — Q_y < 0.
n—00 n n—00 n

Let R, (m) = 0. Suppose that the best arm is unique. Prove that 7 is deterministic, i.e. all
m; are almost surely constant and only chose the best arm.

Solution:

Claim: If R, (w) = 0 for alln > 1, then 7 is deterministic and m = dq+ almost surely.
Proof: Let Ry(m) =0 for all n > 1 and assume there exists t > 1 such that m; # dq+. Then



there exists an arm a # a* with Qg < Qg+ such that P™(A; = a) > 0. We follow

Z P™(A; = a')Qu

a’'eA
= ]Pﬂr(At = (J,)Qa + Z Pﬂ-(At = a/)Qa/
a’'#a
< PT(4; = )Qu + (1 - P"(4; = 0))Q.
= Qx + IED7T(At = a)(Qa - Q*)
< Q4.

Using this we have for alln >t

Ru(m) =nQ. - Y E" [Xt]
> Q. — (0~ 1)Q. + B7[X,])
> Qs — Qs = 0.

This is a contradiction.

e) Suppose v is a l-subgaussian bandit model with k£ arms and km < n, then consider the

Explore then Commit algorithm and recall the regret bound:

mA?2
R, <m E Ay + (n—mk) E Aaexp(— 1 )
acA acA
—
exploration exploitation

Assume now k = 2, such that Ay =0 and Ay = A then we get

A2) < mA—I—nAexp(— m4A2>

R, <mA + (n —m2)Aexp ( -
Show that this upper bound is minimized for m = max {1, {% log(”TAz)-‘ }
Solution:
Define the function f(m) = mA+nAexp (— —) with n > 0, A > 0. First show that f is
convez, then we can solve for a minimum in IR to find minimizers in the natural numbers.
Note therefore that

Vi(m) = A= "2 e (— )

5

A
V2 f(m) = T exp (= 7

4
)>0 vm € IR.

Solving V f(m) = 0 yields
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Defining our candidate m* = é log<”4ﬁ> we conclude from

(- 25) <

2

) <

that f increases to the left of m* faster than to the right, such that f([élog(

f( L% log("%)J). As m has to be a natural number we know m > 1 and so

m = max{ [N log(nﬁQ)—‘ }

minimizes the regret.

2. The Regret - Part 2

Show the following two claims.

a) If the failure probabilities do not decay to zero then the regret grows linearly.
Solution:
By Lemma 1.2.10 in the lecture notes we know that

n

=1
Assume now that the failure probabilities do not decay to zero, i.e. there exist ¢ > 0 and
T > 1 such that T¢(w) > ¢ for all t > T. Then for alln > T we have

T
R, (m) > min A, (Z Te(m) + (n — T)c)

aza =1
> (n—T)cmin A,.
aFa*
Thus, we have shown that the regret grows at least linearly in n for n large enough.

To see that the regret also grows at most linearly in n, note that

B () < mmax A th

< nmax.
acA

This proves the claim.

b) If the failure probability 7, (m) behaves like L, then the regret behaves like >° . 4 Aglog(n)
with constants that depend on the concrete bandit model.
Hint: Recall from basic analysis that f " 1dx = log(n) and how to relate sums and integrals
for monotone integrands.
Solution:
Again by Lemma 1.2.10 in the lecture notes we know that

R, < A, d Ry(m)> A,
< max ; (m) an (m) mln ;



For 7, () ~ L we will prove that log(n) < "1, 1 <log(n) + 1.

First recall that I = {t}}, can be interpreted as a disjoint decomposition of the interval
[1,n] each of length 1. Next, we upper and lower bound the integral flt %dm by taking into
accout that % is monotonic decreasing and considering the upper-sum and lower-sum. We

obtain
n—1

1 b1 — 1
t=2 1T t=1
Thus, we follow that

and on the other hand

All in all we see that

acA

R, < maXA ;Tt ) < r&aj(Aa(l + log(n))

and

R, ( >L1;1é1anA ZTt ) > mlnA log(n).

We conclude the claim by realizing that mingsqx Aq < Y, Aq < Kmax, Ay, where K is

the number of arms. Hence, there exists a constant C' (dependent on the A,’s) such that
R, = C’EGGA Aglog(n).

3. Sub-Gaussian random variables
Recall Definition 1.3.3. of a o-sub-Gaussian random variable X.
a) Show that every o-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] < o2.

Solution:

Let X be a o-sub-Gaussian random variable. Then by Fubini

)\t t AX M )\2t0'2t
t>0 t>0
We follow that
)\2 )\2 2
NE[X] + TE[X?) < Z -+ g(V), (3)
for
)\2t0_2t )\t .
g =3 T S RIX
t>2 t>3



Note that g € 0o(A\?) because

) g()\) ) )\2t0_2t ) )\t .
i e = 2 i T - 2 i Y =0,
t> t>

where we used that both sums are finite due to the finiteness of exp.

Finally, for A\ > 0 dividing (3) by 1/X and taking the limits X | 0 leads to

A gy A

X 22 CR[X?
E[X] < 5 + \ 2IE[ ]—0, A0
and for A < 0 similarly
Ao? A) A
]E[X]zg+£7()\)—21E[X2]—>O, A1 0.

Hence, IE[X] = 0.

Rewriting (3) once again and deviding by \* results in

2
E[X?] < 2((’2+g§;\)) S0 A0,

which proofs the second claim.

Suppose X is o-sub-Gaussian. Prove that cX is |c|o-sub-Gaussian.
Solution:
We have

(cA)202 )\2(co')2
2 2

=€

M.x(\) = IE{e)‘CX} <e

Thus, cX is |c|o-sub-Gaussian.
Show that X7 + Xo is \/0% —i—a%—sub—Gaussian if X7 and Xy are independent oi-sub-
Gaussian and os-sub-Gaussian random variables.

Solution:

We have
Mx,+x,(A) = IE[eA(X“LX”} = IE[eAXle”Q]

= B[ B[]

AQU% AQUg
<e 2 e 2

G

= exp( 5

where the thrid equality follows from independence. This proofs the claim.

Show that a Bernoulli-variable is %—sub—Gaussian.
Solution:

FEzactly as in the next exercise but with a =0 and b= 1.



e) Show that every centered bounded random variable, say bounded below by a and above by

b is @—snb—(}aussian.

Solution:

As a < X < b we have almost surely

eAX<b_Xe/\a+X_a b

T b—ua b—ae
We follow
IE[e)‘X} < b_IE[X]eAa+IE[X]_a€Ab
b—a b—a
_ b a X\
_b—ae b—ae

= eXpL()‘(b - CL)),

where we used IE[X]| = 0 and L(h) is definied by

h

Lih) = (bh_aa) +log (1+5—5).

We will show that L(h) < h?/8, then it follows

A2(b— a)?

IE[@AX} <expL(A(b—a)) < exp(T%

which proofs that X is o-sub-Gauss with o = (bga).

So let us proof that L(h) < h?/8. Therefore we first calculate the first and second derivative.

a GhCL

“b—a b—eha’
B elab
(b — eha)?’

Note now, that

VL(0) =0 and

h h
9 eab e'ab 1
L(h) = — < <-.
v ( ) (b—eha)Q ~ 4ehab ~ 4

>—4(beha)

By Taylor we know there exists 6 € [0, 1] such that

L(h) = L(0) + hVL(0) + %hQVQL(hH) = %hQVQL(hH).

This conclues the proof.



4. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from exercise 1. Show
that

Ry(m) <A+ CVn

for some model-free constant C' so that, in particular, R, (7) < 1+ C'y/n for all bandit models
with regret bound A <1 (for instance for Bernoulli bandits).

Hint: Use the same trick as in the proof of Theorem 1.2.10.

Solution:

We will first show that

nA2

i(1—|—1rnax{0,10g( 1 )})}

R, (7) < min{nA, A + A

by plugging m* = max{1, [é log(”TAQ)]} into the regret bound from the last exercise sheet

* A 2
R, <m*A+ (n—2m")A exp(—m4A ).
This leads to
i} . A? 4 nA?
R, <m*A+ (n—2m*)A eXp(_T max{1, [ﬁlog(Tﬂ})
§ . ) A? A? 4 nA?
= m* A+ (n — 2m*) Amin{exp(~ ), exp(- 2 [ o loa(" )
<exp(— 87 A log("42))< 14
< A+ min{(n — 20 A exp(= ), (0 — 2m0)A 52}
<m min{(n — 2m")A exp(——-), (n ZL) A2,
§ . . A? 4
< m*A + min{(n — 2m*)A exp(—T), Z}
A% 4 4 nA?
< . * _ * o _ JE— _—
< min {m A+ (n —2m*)Aexp( 1 ) A + max{1, (AQ log( 4 H}A}
<1

< <(14max{0, 4 log(222)})A

2
< min { —m*A+nA, A+ %(1 + max{0, log(%)})}
<0
nA2

< min {nA, A+ %(1 + max{0, log(T)})}.

Using this we can devide in the cases A < \/% and A > \/g, for some constant ¢ > 0 which we
specify later. Thus, in the first case A < \/g we have
. 4 nA?
R, < min {nA, A+ Z(l + maX{O,log(T)})} < nA </cn.
For the second case we consider the second term and rewrite

nA2 oo(1A%
%(1 —I—max{O,log(%)}) < 4(% + lg(AzL))



2

We define f(z) = los( "3

xT

), and prove f(x) < 2 for x > \/6274. If this is true we have for the

second case with ¢ = €24 that

nAZ2
log("7-)
< — o\ 4/
R, A—|—4A A )
<A+4\/7 ) <A (8+i)—A+\f(8+g)
< < vn 7 = n o)
Now to our claim. We have
2 — log(™2~)
!
HOE—
and so f'(x) <0 iff
na? e24
> _—
log(4 )>2 & x> -

Thus f decreases in | %,oo) and so f(x) < f(\/e%‘l) =2.
Coosing C = 8 + % concludes the proof, as for the first case with ¢ = e*4 we have R, < 2ey/n <
A + Cy/n and for the second case also R, < A+ Cy/n.

. Advanced: e-greedy Regret

Let 7 the learning strategy that first explores each arm once and then continuous according to
e-greedy for some € € (0, 1) fixed. Furthermore, assume that v is a 1-sub-gaussian bandit model.

Show that the regret grows linearly:

. Ry(m) €
T TR 2 A
acA

Solution:

We denote by m the learning strategy induced by the e-greedy algorithm. Further, denote by
Qa(t) = ﬁ(t) ZZ:O X7 1an—q the estimator for arm a after round t.

Then, forn > K

B(A] = a) = — + (1 = OP(Qu(t) > max Qy(t)).

By the regret decomposition lemma we follow directly that

. Rn(ﬂ-) . 1 e
o, Tl 2 A ) PAT =
acA t=1
>3 At L3
pSoom K
acA t=1
€
acA



To show the upper bound we will prove that Y72 P(Qu(t) > max, Qy(t)) < C < co. Then the
claim follows again from the regret decomposition lemma:

Ra(m) 1 r_
Jn T 5 2 2 AR =a)

t=1 ac A

= lim Aal > (;( + P(Qq(t) > max Qb(ﬂ))

acA n t=1
<L d A+ A, lim ¢
5K a a B0
acA acA
€
= 2> A
acA

As the upper and lower bound on the limit coincide, this proves the claim.

It remains to show that > ;2 P(Qa(t) > maxy, Qy(t)) < C < oo. Therefore, first note that

P(Qa(t) = max Qv(t)) < P(Qa(t) > Q. (1))

< P(Q(t) 2 Qu+ 54 +P(Qult) < Qu+ 50)

2
. A, A A,
= P(Qa(t) > Qa+ 7) +]P)(Qa(t) < Qar — 7)

< 2m3X]P’(|Qa(t) —Qal > %)

for the last equality note that Q, + % = Qu* — % by definition of Ag = Qo+ — Qux and in the
second inequality we used that for two random variables X and Y it holds that

PX>Y)=PX>Y,Y >a)+P(X >Y,Y <a) <P(X >a) +P(Y < a).

For any arm a we will now prove that

A A, et et 16 A2et
P(1Qa(t) — Qal > 5%) < — exp(— ) + g exp(— —22).

Then it is obvious that 350 P(Qa(t) > maxy Qy(t)) < C' < co. So, it holds
A Aa d A Aa
P(‘Qa(ﬂ - Qa’ > 7) = ZP(‘Qa(t) - Qa’ > 77Ta(t> = S)
s=1
N A
=D P(Qu(t) = Qul = 5 1 Ta(t) = $)P(Ta(t) = 5)
s=1

¢ A2g
<D 2exp(-=E)R(TL() = ),
s=1

where we applied Hoeffdings inequality in the last step. We divide into two sums as follows.
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Define x = |£&|, then

. x 28 t 28
P(Qult) ~ Qul > 5 < Y 20xp(- SERTL(1) = ) + 3 2exp(~ TEB(T(D) = 5
s=1 s=x+1

T 28
< P(Tu(t) =s)+ > 2exp(—A§ )
s=1

s=z+1
& 16 A2z
< ZQP(Ta(t) =s)+ EQXP(— 3 ).
s=1 a

In the last step we used that Y52 1 e~ < Le="_ Further, let TF(t) be the number of random

explorations of the arm a before time t, then

S B(T(1) = 5) < P(TH() < )
s=1

et €t €t

< ﬁP(Tf(t) — E[TE(t) < s — %)
et €t

< ﬁP(Tf(t) ~E[TE (1) < —5%)
et et

- ﬁP(Tf(t) —~E[TE(@)] > oK)

< iei I;iO

= 2K

The last inequality follows from Bernstein inequality and this is exactly what we wanted to prove.
Bernstein inequality: Let X; be i.i.d. r.v. with mean p such that | X; —p| < M and V(> ;| X;) =

o2, then
1 ¢ b
P{=Y X;—pu>b)| <exp| 27— |.
nz; TR =P 2 T

In our case we have b = %, o? < % and M = 1.
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