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Benedikt Wille 25.02.20251. Exercise Sheet - Solutions

1. The Regret - Part 1

Recall Definitions 1.2.1 and 1.2.6 from the lecture. Suppose ν is a bandit model and (πt)t=1,...,n

a learning strategy. Then the regret is defined by

Rn(π) := nQ∗ − Eπ

[
n∑

t=1

Xt

]
, n ∈ N,

where Q∗ :=
∫∞
−∞ xPa∗(dx) the expected reward of the best arm a∗ = argmaxaQa.

a) Suppose a two-armed bandit with Q1 = 1 and Q2 = −1 and a learning strategy π given by

πt =

{
δ1, t even,

δ2, t odd.

Calculate the regret Rn(π) for all n ∈ IN.

Solution:

If n ∈ IN is even, then

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]
= n ∗ 1−

(n
2
(−1)− n

2
1
)
= n (1)

and if n ∈ IN is odd, then

Rn(π) =nQ∗ − IEπ
[∑
t≤n

Xt

]
= (n− 1)Q∗ − IEπ

[ ∑
t≤n−1

Xt

]
+Q∗ − IEπ[Xn]

= Rn−1(π) + 1− (−1)

(1)
= n− 1 + 1 + 1 = n+ 1

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all n ≥ 5.

Solution:

Consider for example the 3-armed bandit with Q1 = 1, Q2 = −1, Q3 = 0 and a policy π with

π1 = π2 = δ2, π3 = δ3, πt = δ1 ∀t ≥ 4.

Then for all n ≥ 4 we have

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]

= n ∗ 1−
(
(−1) + (−1) + 0 +

n∑
t=4

1
)
= n+ 2− (n− 3) = 5.
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c) Show for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n < ∞.

Solution:

Claim: for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n < ∞.

Proof: Fix a learning strategy π. Then for the first Claim

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]
= nQ∗ −

∑
t≤n

IEπ
[
Xt

]
= nQ∗ −

∑
t≤n

∑
a∈A

IEπ
[
Xt1{At=a}

]
= nQ∗ −

∑
t≤n

∑
a∈A

Pπ(At = a)IEπ
[
Xt

∣∣∣At = a
]

= nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Qa

≥ nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Q∗

= nQ∗ − nQ∗

= 0,

where we used the formular for conditional expectation in the forth line, the definition of

Qa in the fifth line and Qa ≤ Q∗ for all a ∈ A in the inequality.

For the second Claim we define Q−∗ := mina∈AQa. Then it holds similar to the calculation

above

Rn(π) = nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Qa

≤ nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Q−∗

= nQ∗ − nQ−∗.

Thus

lim sup
n→∞

Rn(π)

n
≤ lim sup

n→∞

nQ∗ − nQ−∗
n

= Q∗ −Q−∗ < ∞.

d) Let Rn(π) = 0. Suppose that the best arm is unique. Prove that π is deterministic, i.e. all

πt are almost surely constant and only chose the best arm.

Solution:

Claim: If Rn(π) = 0 for all n ≥ 1, then π is deterministic and πt = δa∗ almost surely.

Proof: Let Rn(π) = 0 for all n ≥ 1 and assume there exists t ≥ 1 such that πt ̸= δa∗. Then
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there exists an arm a ̸= a∗ with Qa < Qa∗ such that Pπ(At = a) > 0. We follow

IEπ[Xt] =
∑
a′∈A

Pπ(At = a′)Qa′

= Pπ(At = a)Qa +
∑
a′ ̸=a

Pπ(At = a′)Qa′

≤ Pπ(At = a)Qa + (1− Pπ(At = a))Q∗

= Q∗ + Pπ(At = a)(Qa −Q∗)

< Q∗.

Using this we have for all n ≥ t

Rn(π) = nQ∗ −
∑
t≤n

IEπ
[
Xt

]
≥ nQ∗ −

(
(n− 1)Q∗ + IEπ[Xt]

)
> Q∗ −Q∗ = 0.

This is a contradiction.

e) Suppose ν is a 1-subgaussian bandit model with k arms and km ≤ n, then consider the

Explore then Commit algorithm and recall the regret bound:

Rn ≤ m
∑
a∈A

∆a︸ ︷︷ ︸
exploration

+(n−mk)
∑
a∈A

∆a exp
(
− m∆2

a

4

)
︸ ︷︷ ︸

exploitation

.

Assume now k = 2, such that ∆1 = 0 and ∆2 = ∆ then we get

Rn ≤ m∆+ (n−m2)∆ exp
(
− m∆2

4

)
≤ m∆+ n∆exp

(
− m∆2

4

)
.

Show that this upper bound is minimized for m = max
{
1,
⌈

4
∆2 log(

n∆2

4 )
⌉}

.

Solution:

Define the function f(m) = m∆+n∆exp
(
− m∆2

4

)
with n > 0,∆ > 0. First show that f is

convex, then we can solve for a minimum in IR to find minimizers in the natural numbers.

Note therefore that

∇f(m) = ∆− n∆3

4
exp

(
− m∆2

4

)
∇2f(m) =

n∆5

16
exp

(
− m∆2

4

)
> 0 ∀m ∈ IR.

Solving ∇f(m) = 0 yields

n∆3

4
exp

(
− m∆2

4

)
= ∆

⇔ m =
4

∆2
log
(n∆2

4

)
.
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Defining our candidate m∗ = 4
∆2 log

(
n∆2

4

)
we conclude from

∇3f(m) = −n∆7

64
exp

(
− m∆2

4

)
< 0

that f increases to the left of m∗ faster than to the right, such that f(
⌈

4
∆2 log(

n∆2

4 )
⌉
) <

f(
⌊

4
∆2 log(

n∆2

4 )
⌋
). As m has to be a natural number we know m ≥ 1 and so

m = max
{
1,

⌈
4

∆2
log(

n∆2

4
)

⌉}
minimizes the regret.

2. The Regret - Part 2

Show the following two claims.

a) If the failure probabilities do not decay to zero then the regret grows linearly.

Solution:

By Lemma 1.2.10 in the lecture notes we know that

Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π).

Assume now that the failure probabilities do not decay to zero, i.e. there exist c > 0 and

T ≥ 1 such that τt(π) > c for all t ≥ T . Then for all n > T we have

Rn(π) ≥ min
a̸=a∗

∆a

(
T∑
t=1

τt(π) + (n− T )c

)
≥ (n− T )cmin

a̸=a∗
∆a.

Thus, we have shown that the regret grows at least linearly in n for n large enough.

To see that the regret also grows at most linearly in n, note that

Rn(π) ≤ max
a∈A

∆a

n∑
t=1

τt(π)

≤ nmax
a∈A

.

This proves the claim.

b) If the failure probability τn(π) behaves like
1
n , then the regret behaves like

∑
a∈A∆a log(n)

with constants that depend on the concrete bandit model.

Hint: Recall from basic analysis that
∫ n
1

1
xdx = log(n) and how to relate sums and integrals

for monotone integrands.

Solution:

Again by Lemma 1.2.10 in the lecture notes we know that

Rn ≤ max
a∈A

∆a

n∑
t=1

τt(π) and Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π).
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For τn(π) ≃ 1
n we will prove that log(n) ≤

∑n
t=1

1
t ≤ log(n) + 1.

First recall that I = {t}nt=1 can be interpreted as a disjoint decomposition of the interval

[1, n] each of length 1. Next, we upper and lower bound the integral
∫ t
1

1
xdx by taking into

accout that 1
x is monotonic decreasing and considering the upper-sum and lower-sum. We

obtain
n∑

t=2

1

t
≤
∫ t

1

1

x
dx ≤

n−1∑
t=1

1

t
.

Thus, we follow that
n∑

t=1

1

t
≥

n−1∑
t=1

1

t
≥ log(n)

and on the other hand
n∑

t=1

1

t
= 1 +

n∑
t=2

1

t
≤ 1 + log(n).

All in all we see that

Rn ≤ max
a∈A

∆a

n∑
t=1

τt(π) ≤ max
a∈A

∆a(1 + log(n))

and

Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π) ≥ min
a̸=a∗

∆a log(n).

We conclude the claim by realizing that mina̸=a∗ ∆a ≤
∑

a∆a ≤ Kmaxa∆a, where K is

the number of arms. Hence, there exists a constant C̃ (dependent on the ∆a’s) such that

Rn = C̃
∑

a∈A∆a log(n).

3. Sub-Gaussian random variables

Recall Definition 1.3.3. of a σ-sub-Gaussian random variable X.

a) Show that every σ-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] ≤ σ2.

Solution:

Let X be a σ-sub-Gaussian random variable. Then by Fubini∑
t≥0

λt

t!
IE[Xt] = IE

[
eλX

]
≤ e

λ2σ2

2 =
∑
t≥0

λ2tσ2t

2tt!
. (2)

We follow that

λIE[X] +
λ2

2
IE[X2] ≤ λ2σ2

2
+ g(λ), (3)

for

g(λ) =
∑
t≥2

λ2tσ2t

2tt!
−
∑
t≥3

λt

t!
IE[Xt].
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Note that g ∈ o(λ2) because

lim
λ→0

g(λ)

λ2
=
∑
t≥2

lim
λ→0

λ2tσ2t

2tt!
−
∑
t≥3

lim
λ→0

λt

t!
IE[Xt] = 0,

where we used that both sums are finite due to the finiteness of exp.

Finally, for λ > 0 dividing (3) by 1/λ and taking the limits λ ↓ 0 leads to

IE[X] ≤ λσ2

2
+

g(λ)

λ
− λ

2
IE[X2] → 0, λ ↓ 0

and for λ < 0 similarly

IE[X] ≥ λσ2

2
+

g(λ)

λ
− λ

2
IE[X2] → 0, λ ↑ 0.

Hence, IE[X] = 0.

Rewriting (3) once again and deviding by λ2 results in

IE[X2] ≤ 2
(σ2

2
+

g(λ)

λ2

)
→ σ2, λ → 0,

which proofs the second claim.

b) Suppose X is σ-sub-Gaussian. Prove that cX is |c|σ-sub-Gaussian.

Solution:

We have

McX(λ) = IE
[
eλcX

]
≤ e

(cλ)2σ2

2 = e
λ2(cσ)2

2 .

Thus, cX is |c|σ-sub-Gaussian.

c) Show that X1 + X2 is
√

σ2
1 + σ2

2-sub-Gaussian if X1 and X2 are independent σ1-sub-

Gaussian and σ2-sub-Gaussian random variables.

Solution:

We have

MX1+X2(λ) = IE
[
eλ(X1+X2)

]
= IE

[
eλX1eλX2

]
= IE

[
eλX1

]
IE
[
eλX2

]
≤ e

λ2σ2
1

2 e
λ2σ2

2
2

= exp(
λ2(
√
σ2
1 + σ2

2)
2

2
).

where the thrid equality follows from independence. This proofs the claim.

d) Show that a Bernoulli-variable is 1
2 -sub-Gaussian.

Solution:

Exactly as in the next exercise but with a = 0 and b = 1.
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e) Show that every centered bounded random variable, say bounded below by a and above by

b is (b−a)
2 -sub-Gaussian.

Solution:

As a ≤ X ≤ b we have almost surely

eλX ≤ b−X

b− a
eλa +

X − a

b− a
eλb.

We follow

IE
[
eλX

]
≤ b− IE[X]

b− a
eλa +

IE[X]− a

b− a
eλb

=
b

b− a
eλa − a

b− a
eλb

= expL(λ(b− a)),

where we used IE[X] = 0 and L(h) is definied by

L(h) =
ha

(b− a)
+ log

(
1 +

a− eha

b− a

)
.

We will show that L(h) ≤ h2/8, then it follows

IE
[
eλX

]
≤ expL(λ(b− a)) ≤ exp(

λ2(b− a)2

8
),

which proofs that X is σ-sub-Gauss with σ = (b−a)
2 .

So let us proof that L(h) ≤ h2/8. Therefore we first calculate the first and second derivative.

∇L(h) =
a

b− a
− eha

b− eha
,

∇2L(h) = − ehab

(b− eha)2
.

Note now, that

L(0) = 0,

∇L(0) = 0 and

∇2L(h) = − ehab

(b− eha)2︸ ︷︷ ︸
≥−4(beha)

≤ ehab

4ehab
≤ 1

4
.

By Taylor we know there exists θ ∈ [0, 1] such that

L(h) = L(0) + h∇L(0) +
1

2
h2∇2L(hθ) =

1

2
h2∇2L(hθ).

As ∇2L(h) ≤ 1
4 , we have

L(h) ≤ 1

2
h2

1

4
=

h2

8
.

This conclues the proof.
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4. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from exercise 1. Show

that

Rn(π) ≤ ∆+ C
√
n

for some model-free constant C so that, in particular, Rn(π) ≤ 1 + C
√
n for all bandit models

with regret bound ∆ ≤ 1 (for instance for Bernoulli bandits).

Hint: Use the same trick as in the proof of Theorem 1.2.10.

Solution:

We will first show that

Rn(π) ≤ min{n∆,∆+
4

∆

(
1 + max{0, log(n∆

2

4
)}
)
}

by plugging m∗ = max{1, ⌈ 4
∆2 log(

n∆2

4 )⌉} into the regret bound from the last exercise sheet

Rn ≤ m∗∆+ (n− 2m∗)∆ exp(−m∗∆2

4
).

This leads to

Rn ≤ m∗∆+ (n− 2m∗)∆ exp(−∆2

4
max{1, ⌈ 4

∆2
log(

n∆2

4
)⌉})

= m∗∆+ (n− 2m∗)∆min{exp(−∆2

4
), exp(−∆2

4
⌈ 4

∆2
log(

n∆2

4
)⌉)︸ ︷︷ ︸

≤exp(−∆2

4
4

∆2 log(n∆2

4
))≤ 4

∆2n

}

≤ m∗∆+min{(n− 2m∗)∆ exp(−∆2

4
), (n− 2m∗︸︷︷︸

>0

)∆
4

∆2n
}

≤ m∗∆+min{(n− 2m∗)∆ exp(−∆2

4
),

4

∆
}

≤ min
{
m∗∆+ (n− 2m∗)∆ exp(−∆2

4
)︸ ︷︷ ︸

≤1

,
4

∆
+max{1, ⌈ 4

∆2
log(

n∆2

4
)⌉}∆︸ ︷︷ ︸

≤(1+max{0, 4
∆2 log(n∆2

4
)})∆

}

≤ min
{
−m∗∆︸ ︷︷ ︸

≤0

+n∆,∆+
4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

≤ min
{
n∆,∆+

4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

.

Using this we can devide in the cases ∆ ≤
√

c
n and ∆ >

√
c
n , for some constant c > 0 which we

specify later. Thus, in the first case ∆ ≤
√

c
n we have

Rn ≤ min
{
n∆,∆+

4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

≤ n∆ ≤
√
cn.

For the second case we consider the second term and rewrite

4

∆

(
1 + max{0, log(n∆

2

4
)}
)
≤ 4(

1

∆
+

log(n∆
2

4 )

∆
).
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We define f(x) =
log(nx2

4
)

x , and prove f(x) ≤ 2 for x ≥
√

e24
n . If this is true we have for the

second case with c = e24 that

Rn ≤ ∆+ 4(
1

∆
+

log(n∆
2

4 )

∆
)

≤ ∆+ 4(

√
n

c
+ 2) ≤ ∆+

√
n(8 +

4√
c
) = ∆+

√
n(8 +

2

e
).

Now to our claim. We have

f ′(x) =
2− log(nx

2

4 )

x2

and so f ′(x) ≤ 0 iff

log(
nx2

4
) ≥ 2 ⇔ x ≥

√
e24

n
.

Thus f decreases in [
√

e24
n ,∞) and so f(x) ≤ f(

√
e24
n ) = 2.

Coosing C = 8+ 2
e concludes the proof, as for the first case with c = e24 we have Rn ≤ 2e

√
n ≤

∆+ C
√
n and for the second case also Rn ≤ ∆+ C

√
n.

5. Advanced: ϵ-greedy Regret

Let π the learning strategy that first explores each arm once and then continuous according to

ϵ-greedy for some ϵ ∈ (0, 1) fixed. Furthermore, assume that ν is a 1-sub-gaussian bandit model.

Show that the regret grows linearly:

lim
n→∞

Rn(π)

n
=

ϵ

K

∑
a∈A

∆a

Solution:

We denote by π the learning strategy induced by the ϵ-greedy algorithm. Further, denote by

Q̂a(t) =
1

Na(t)

∑t
n=0X

π
n1Aπ

n=a the estimator for arm a after round t.

Then, for n ≥ K

P(Aπ
t = a) =

ϵ

K
+ (1− ϵ)P(Q̂a(t) ≥ max

b
Q̂b(t)).

By the regret decomposition lemma we follow directly that

lim
n→∞

Rn(π)

n
= lim

n→∞

1

n

∑
a∈A

∆a

n∑
t=1

P(Aπ
t = a)

≥
∑
a∈A

∆a lim
n→∞

1

n

n∑
t=1

ϵ

K

=
ϵ

K

∑
a∈A

∆a.

9



To show the upper bound we will prove that
∑∞

t=1 P(Q̂a(t) ≥ maxb Q̂b(t)) ≤ C < ∞. Then the

claim follows again from the regret decomposition lemma:

lim
n→∞

Rn(π)

n
= lim

n→∞

1

n

n∑
t=1

∑
a∈A

∆aP(Aπ
t = a)

= lim
n→∞

∑
a∈A

∆a
1

n

n∑
t=1

(
ϵ

K
+ P (Q̂a(t) ≥ max

b
Q̂b(t))

)
≤ ϵ

K

∑
a∈A

∆a +
∑
a∈A

∆a lim
n→∞

C

n

=
ϵ

K

∑
a∈A

∆a.

As the upper and lower bound on the limit coincide, this proves the claim.

It remains to show that
∑∞

t=1 P(Q̂a(t) ≥ maxb Q̂b(t)) ≤ C < ∞. Therefore, first note that

P(Q̂a(t) ≥ max
b

Q̂b(t)) ≤ P(Q̂a(t) ≥ Q̂a∗(t))

≤ P(Q̂a(t) ≥ Qa +
∆a

2
) + P(Q̂a(t) < Qa +

∆a

2
)

= P(Q̂a(t) ≥ Qa +
∆a

2
) + P(Q̂a(t) < Qa∗ −

∆a

2
)

≤ 2max
a

P(|Q̂a(t)−Qa| ≥
∆a

2
)

for the last equality note that Qa +
∆a
2 = Qa∗ − ∆a

2 by definition of ∆a = Qa∗ −Qa∗ and in the

second inequality we used that for two random variables X and Y it holds that

P(X ≥ Y ) = P(X ≥ Y, Y ≥ a) + P(X ≥ Y, Y < a) ≤ P(X ≥ a) + P(Y < a).

For any arm a we will now prove that

P(|Q̂a(t)−Qa| ≥
∆a

2
) ≤ ϵt

K
exp(− ϵt

5K
) +

16

∆2
a

exp(−∆2
aϵt

16K
).

Then it is obvious that
∑∞

t=1 P(Q̂a(t) ≥ maxb Q̂b(t)) ≤ C < ∞. So, it holds

P(|Q̂a(t)−Qa| ≥
∆a

2
) =

t∑
s=1

P(|Q̂a(t)−Qa| ≥
∆a

2
, Ta(t) = s)

=

t∑
s=1

P(|Q̂a(t)−Qa| ≥
∆a

2
|Ta(t) = s)P(Ta(t) = s)

≤
t∑

s=1

2 exp(−∆2
as

8
)P(Ta(t) = s),

where we applied Hoeffdings inequality in the last step. We divide into two sums as follows.
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Define x = ⌊ ϵt
2K ⌋, then

P(|Q̂a(t)−Qa| ≥
∆a

2
) ≤

x∑
s=1

2 exp(−∆2
as

8
)P(Ta(t) = s) +

t∑
s=x+1

2 exp(−∆2
as

8
)P(Ta(t) = s)

≤
x∑

s=1

2P(Ta(t) = s) +

t∑
s=x+1

2 exp(−∆2
as

8
)

≤
x∑

s=1

2P(Ta(t) = s) +
16

∆2
a

exp(−∆2
ax

8
).

In the last step we used that
∑∞

t=x+1 e
−κt ≤ 1

κe
−κx. Further, let TR

a (t) be the number of random

explorations of the arm a before time t, then

x∑
s=1

P(Ta(t) = s) ≤ xP(TR
a (t) ≤ x)

≤ ϵt

2K
P(TR

a (t)− IE[TR
a (t)] ≤ ⌊ ϵt

2K
⌋ − ϵt

K
)

≤ ϵt

2K
P(TR

a (t)− IE[TR
a (t)] ≤ − ϵt

2K
)

=
ϵt

2K
P(TR

a (t)− IE[TR
a (t)] ≥ ϵt

2K
)

≤ ϵt

2K
e−

ϵt
K10 .

The last inequality follows from Bernstein inequality and this is exactly what we wanted to prove.

Bernstein inequality: Let Xi be i.i.d. r.v. with mean µ such that |Xi−µ| ≤ M and V(
∑n

i=1Xi) =

σ2, then

P

(
1

n

n∑
i=1

Xi − µ ≥ b

)
≤ exp

(
1
2b

2

σ2 + 1
3Mb

)
.

In our case we have b = ϵt
2K , σ2 ≤ tϵ

K and M = 1.
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