

## Prof. Dr. Leif DöringAndré Ferdinand, Sara Klein12. Solution Sheet

Reinforcement Learning

## 1. Back propagation: Theory

Go through the proof of Theorem 5.3.8 and check that the gradient  $\nabla_w F_w(x)$  is computed by  $\frac{\partial}{\partial w_{i,j}^l} F_w(x)_m = \delta_{i,j}^l V_i^l$  with  $\delta_{j,m}^L = \Phi'(h_j^L)$  if j = m and zero else and  $\delta_{j,m}^l = \sigma'(h_j^{l-1}) w_{j,m}^{l+1} \delta_{m,m}^{l+1}$ . *Hint: Note that*  $\nabla_w F_w(x) \in \mathbb{R}^k$ , *i.e.*  $\delta_{j,m}$  *is with respect to the m-th koordinate of*  $\nabla_w F_w(x)$ . *Solution:* 

First, note that  $\nabla_w F_w(x) \in \mathbb{R}^k$ , i.e. we have to consider the derivatives in each dimension. **Output layer**: To compute the partial derivative with respect to the final weights  $w_{i,j}^L$  we proceed as follows:

$$\begin{split} \frac{\partial}{\partial w_{i,j}^L} F_w(x)_j &= \frac{\partial}{\partial w_{i,j}^L} \Phi\Big(\underbrace{\sum_{k=1}^{N_{L-1}} w_{k,j}^L V_k^{L-1}}_{=h_j^L}\Big) \\ &= \Phi'(h_j^L) V_i^{L-1} \\ &=: \delta_{j,j}^L V_i^{L-1}. \end{split}$$

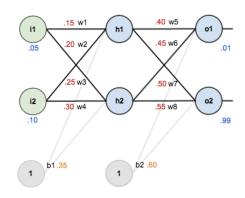
Note that the derivative of  $F_w(x)_m$  with respect to  $w_{i,j}^L$  is 0 for  $j \neq m$ . In the last hidden layer we have

$$\begin{split} & \frac{\partial}{\partial w_{i,j}^{L-1}} F_w(x)_m \\ &= \frac{\partial}{\partial w_{i,j}^{L-1}} \Phi \Big( \sum_{t=1}^{N_{L-1}} w_{t,m}^L \sigma \Big( \sum_{r=1}^{N_{L-2}} w_{r,t}^{L-1} V_r^{L-2} \Big) \Big) \\ &= \Phi'(h_m^L) \frac{\partial}{\partial w_{i,j}^{L-1}} \sum_{t=1}^{N_{L-1}} w_{t,m}^L \sigma \Big( \sum_{r=1}^{N_{L-2}} w_{r,t}^{L-1} V_r^{L-2} \Big) \\ &= \Phi'(h_m^L) \sum_{t=1}^{N_{L-1}} w_{t,m}^L \sigma' \Big( \sum_{r=1}^{N_{L-2}} w_{r,t}^{L-1} V_r^{L-2} \Big) \frac{\partial}{\partial w_{i,j}^{L-1}} \sum_{r=1}^{N_{L-2}} w_{r,t}^{L-1} V_r^{L-2} \\ &= \Phi'(h_m^L) w_{j,m}^L \sigma'(h_j^{L-2}) V_i^{L-2} \\ &= \delta_{m,m}^L w_{j,m}^L \sigma'(h_j^{L-2}) V_i^{L-2} \\ &= \delta_{j,m}^{L-1} V_i^{L-2}. \end{split}$$

And so on...

## 2. Back propagation: Praxis

Consider a neural network with two inputs, two hidden neurons, two output neurons:



The blue numbers are the training inputs/outputs, the red numbers are the weights and the orange numbers the biases. Calculate the forward passes and backward passes from Algorithm 33 in the lecture and update the weights.

Solution:

See https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example  $net_{h_l} \equiv \delta^l$  and  $out_{h_l} \equiv V^l$  from Algorithm 33 in the lecture notes.