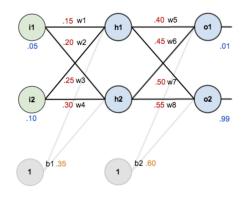


Prof. Dr. Leif DöringAndré Ferdinand, Sara Klein12. Exercise Sheet


Reinforcement Learning

1. Back propagation: Theory

Go through the proof of Theorem 5.3.8 and check that the gradient $\nabla_w F_w(x)$ is computed by $\frac{\partial}{\partial w_{i,j}^l} F_w(x)_m = \delta_{i,j}^l V_i^l$ with $\delta_{j,m}^L = \Phi'(h_j^L)$ if j = m and zero else and $\delta_{j,m}^l = \sigma'(h_j^{l-1}) w_{j,m}^{l+1} \delta_{m,m}^{l+1}$. Hint: Note that $\nabla_w F_w(x) \in \mathbb{R}^k$, i.e. $\delta_{j,m}$ is with respect to the m-th koordinate of $\nabla_w F_w(x)$.

2. Back propagation: Praxis

Consider a neural network with two inputs, two hidden neurons, two output neurons:

The blue numbers are the training inputs/outputs, the red numbers are the weights and the orange numbers the biases. Calculate the forward passes and backward passes from Algorithm 33 in the lecture and update the weights.