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1. Baseline trick

Write down and proof the baseline gradient representation for infinite discounted MDPs.
Solution:

We aim to prove
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for some b € IR. By the finiteness of the state and action space we have that
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Hence, the claim follows from the policy gradient theorem for discounted MDPs (5.2.6) in the
lecture.

2. PL-condition

a) Prove that p-strong convexity implies the PL-condition (5.4.), i.e.
IVf(@)|? = 2r(f(x) = f.) VzeR? (1)

for r = p and f, = min  pa f(z) > —oo.
Solution:

Recall by the definition of u-strong convexity, that

1) = f(@) + V@) (y = 2) + Slly -l

Minimizing both sides of the equation still fulfills the inequality, so we will calculate the

derivatives for both cases separately.
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as the second derivative of the RHS is pu > 0 we see that this is a minimum. Plugging in

both minima we obtain that
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Rearranging results in
IVf(@)IP > 2p(f () = f)-

b) Show that f(z) = x? + 3sin?(z) satisfies the PL-condition (1) and prove that f is not

convex. Plot the function to see why gradient descent converges. Hint: The plot can also

help to find the parameter r of the PL-condition.

Solution:
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If we plot f and (f')* we see that for r = 5 we have the PL-condition.
= Untitled Graph desmos [Logln ‘cr sgnlp 2 O ®
+ - 8 « £
}‘V/ F(x) = x*+3 sin(x)? -
@ f'(x)z 30 P
21(x)

30 -20 10 0 10 20

[E] a
We argue why large x are not a problem: we have f'(x) = 2(x + 3sin(x)cos(z)) and
therefore

f'(x)? = 4(z + 3sin(z) cos(z))?
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forx > 8. x < 8 is clear from the plot.

Further, f is not convex, as
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3. Stochastic gradient descent

In the lecture we proved convergence of SGD to stationary points if the function is L-smooth and
bounded. Consider the setting from the theorem of the lecture and additionally assume p-strong
convexity. Prove that || X, — z.|| = 0 almost surely.

Solution:

We proved above that the PL inequality is satisfied for L-smooth, strongly convex functions. This

together with strong convexity implies
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From part in the middle we get F(X,) — F(x) for free.



