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1. Baseline trick

Write down and proof the baseline gradient representation for infinite discounted MDPs.

Solution:

We aim to prove
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∑
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for some b ∈ IR. By the finiteness of the state and action space we have that∑
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Hence, the claim follows from the policy gradient theorem for discounted MDPs (5.2.6) in the

lecture.

2. PL-condition

a) Prove that µ-strong convexity implies the PL-condition (5.4.), i.e.

∥∇f(x)∥2 ≥ 2r(f(x)− f∗) ∀x ∈ IRd (1)

for r = µ and f∗ = minx∈IRd f(x) > −∞.

Solution:

Recall by the definition of µ-strong convexity, that

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2.

Minimizing both sides of the equation still fulfills the inequality, so we will calculate the

derivatives for both cases separately.

min
y

f(y) = f∗,

and

∇f(x) + µ(y − x)
!
= 0 ⇔ y = x− 1

µ
∇f(x),
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as the second derivative of the RHS is µ > 0 we see that this is a minimum. Plugging in

both minima we obtain that

f∗ ≥ f(x) +∇f(x)T (x− 1

µ
∇f(x)− x) +

µ

2
∥x− 1

µ
∇f(x)− x∥2

= f(x)− 1

µ
∥∇f(x)∥2 + 1

2µ
∥∇f(x)∥2

= f(x)− 1

2µ
∥∇f(x)∥2.

Rearranging results in

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗).

b) Show that f(x) = x2 + 3 sin2(x) satisfies the PL-condition (1) and prove that f is not

convex. Plot the function to see why gradient descent converges. Hint: The plot can also

help to find the parameter r of the PL-condition.

Solution:

If we plot f and (f ′)2 we see that for r = 1
6 we have the PL-condition.

We argue why large x are not a problem: we have f ′(x) = 2(x + 3 sin(x) cos(x)) and

therefore

f ′(x)2 = 4(x+ 3 sin(x) cos(x)︸ ︷︷ ︸
∈[−1,1]

)2

|x|≥3

≥ 4(|x| − 3)2

= 4x2 − 24|x|+ 36

=
1

3
x2 +

11

3
x2 − 3(8|x|)︸ ︷︷ ︸
≥0, for x≥8

+36

≥ 1

3
(x2 + 3 sin(x)2),
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for x ≥ 8. x ≤ 8 is clear from the plot.

Further, f is not convex, as

f(
1

2
π +

1

2
0) =

π2

4
+ 3 >

1

2
f(π) +

1

2
f(0).

3. Stochastic gradient descent

In the lecture we proved convergence of SGD to stationary points if the function is L-smooth and

bounded. Consider the setting from the theorem of the lecture and additionally assume µ-strong

convexity. Prove that ∥Xn − x∗∥ → 0 almost surely.

Solution:

We proved above that the PL inequality is satisfied for L-smooth, strongly convex functions. This

together with strong convexity implies

µ

2
∥Xn − x∗∥2 ≤ F (Xn)− F (x∗)− ⟨∇F (x∗)︸ ︷︷ ︸

=0

, Xn − x∗⟩
PL
≤ L

2µ
∥∇F (Xn)∥2 → 0.

From part in the middle we get F (Xn) → F (x∗) for free.
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