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1. SoftMax parameterisation

Show for the tabular softmax parametrisation from Example 5.0.2 that

∂ log(πθ(a ; s))

∂θs′,a′
= 1{s=s′}(1{a=a′} − πθ(a′ ; s′))

and for the linear softmax with features Φ(s, a)

∇ log(πθ(a ; s)) = Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

Solution:

By the definition of the tabular softmax parametrisation (πθ(a ; s) = eθs,a∑
ã∈A eθ

s,ã ) we have

log(πθ(a ; s)) = θs,a − log(
∑
ã∈A

eθs,ã).

So for the derivative holds if s′ ̸= s then

∂ log(πθ(a ; s))

∂θs′,a′
= 0.

If s′ = s and a′ = a then

∂ log(πθ(a ; s))

∂θs,a
= 1− 1∑

ã∈A eθs,ã
eθs,a = 1− πθ(a ; s)

and if s′ = s and a′ ̸= a then

∂ log(πθ(a ; s))

∂θs,a′
= − 1∑

ã∈A eθs,ã
eθs,a′ = −πθ(a′ ; s).

Summing up we get

∂ log(πθ(a ; s))

∂θs′,a′
= 1{s = s′}(1{a=a′} − πθ(a′ ; s′)).

Similarly, for the linear softmax with features Φ(s, a) we have

log(πθ(a; s)) = θ · Φ(s, a)− log(
∑
a′∈A

eθ·Φ(s,a′)).

The derivative can be calculated without considering specific cases, we obtain

∇ log(πθ(a; s)) = Φ(s, a)− 1∑
a′∈A eθ·Φ(s,a′)

∑
a′∈A

Φ(s, a′)eθ·Φ(s,a′)

= Φ(s, a)−
∑
a′∈A

Φ(s, a′)
eθ·Φ(s,a′)∑

a′∈A eθ·Φ(s,a′)

∑
a′∈A

= Φ(s, a)−
∑
a′∈A

Φ(s, a′)πθ(a′ ; s).
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2. Policy Gradient Theorems

For episodic MDPs (the MDP terminates almost surely under all policies πθ), we can get rid of

the assumption of the existence of ∇Js(θ). Go through the proof of Theorem 5.1.6 and argue

why it is enough to assume the existence of ∇πθ(· ; s) for all s ∈ S.
Solution:

Recall the proof of Theorem 5.3.6 (Policy Gradient Theorem in infinite time horizon). The first

step of the proof was to show by induction that

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As′

∇πθ(a; s′)Qπθ
(s′, a)

+
∑
s′

γn+1p(s → s′; t, πθ)∇Js′(θ).

Now assume that the MDP is terminating, then there exists a random time T , which is almost

surely finite, such that p(ŝ; ŝ, a = 1) and R(ŝ, a) = 0 for all a ∈ Aŝ. Intuitively, we want to argue

that the RHS regarding the claim proven by induction stated above exists because Jŝ(θ) is zero

after the terminating time T . If we assume that πθ is differentiable in θ, then

T−1∑
n=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a)

exists almost surely. It remains to show that this is equal to the derivative of ∇Js(θ). By the

termination we know that p(s → ŝ;T, πθ) = 1 and Jŝ(θ) = 0. Thus,

T−1∑
n=0

∑
s′∈S

γtp(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a)

=
T−1∑
n=0

∑
s′∈S

p(s → s′; t, πθ)
∑
a∈As

∇πθ(a; s′)Qπθ
(s′, a) +

∑
s′

γn+1p(s → s′;T, πθ)∇Js′(θ)

exists almost surely. Reading the equations in the proof of Theorem 5.3.6 backwards yields that

this is equal to ∇Js(θ). We are allowed to interchange the derivative and the sums as stated

there, because we know that the RHS exists.

3. Baseline Trick

Show that the constant baseline b in Theorem 5.2.1 can be replaced by any deterministic state-

dependent baseline b : S → IR, i.e.

∇θJ(θ) = IEπθ

s

[ T−1∑
t=0

∇θ

(
log πθ(At ; St)

)(
Qπθ

t (St, At)− b(St)
)]
.

Solution:

The computation is very similar to the computations in the lecture notes. Assume b : S → IR,
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then

IEπθ

s

[
∇θ

(
log πθ(At ; St)

)
b(St)

]
=

∑
st∈S

∑
at∈As

Pπθ

s (St = st)π
θ(at ; st)∇θ

(
log πθ(at ; st)

)
b(st)

=
∑
st∈S

Pπθ

s (St = st)b(st)
∑

at∈As

∇θπ
θ(at ; st)

=
∑
st∈S

Pπθ

s (St = st)b(st)∇θ

∑
at∈A

πθ(at ; st)︸ ︷︷ ︸
=1

= 0.

If the baseline remains unaffected by the action, we can express the baseline separately from the

summation over a. This condition is sufficient for the trick to be effective.
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