Prof. Dr. Leif Döring
André Ferdinand, Sara Klein

10. Solution Sheet

1. SoftMax parameterisation

Show for the tabular softmax parametrisation from Example 5.0.2 that

$$
\frac{\partial \log \left(\pi^{\theta}(a ; s)\right)}{\partial \theta_{s^{\prime}, a^{\prime}}}=\mathbf{1}_{\left\{s=s^{\prime}\right\}}\left(\mathbf{1}_{\left\{a=a^{\prime}\right\}}-\pi^{\theta}\left(a^{\prime} ; s^{\prime}\right)\right)
$$

and for the linear softmax with features $\Phi(s, a)$

$$
\nabla \log \left(\pi^{\theta}(a ; s)\right)=\Phi(s, a)-\sum_{a^{\prime}} \pi^{\theta}\left(a^{\prime} ; s\right) \Phi\left(s, a^{\prime}\right) .
$$

Solution:
By the definition of the tabular softmax parametrisation $\left(\pi^{\theta}(a ; s)=\frac{e^{\theta s, a}}{\sum_{\bar{a} \in \mathcal{A}} e^{\theta s, \bar{a}}}\right)$ we have

$$
\log \left(\pi^{\theta}(a ; s)\right)=\theta_{s, a}-\log \left(\sum_{\tilde{a} \in \mathcal{A}} e^{\theta_{s, \tilde{a}}}\right)
$$

So for the derivative holds if $s^{\prime} \neq s$ then

$$
\frac{\partial \log \left(\pi^{\theta}(a ; s)\right)}{\partial \theta_{s^{\prime}, a^{\prime}}}=0 .
$$

If $s^{\prime}=s$ and $a^{\prime}=a$ then

$$
\frac{\partial \log \left(\pi^{\theta}(a ; s)\right)}{\partial \theta_{s, a}}=1-\frac{1}{\sum_{\tilde{a} \in \mathcal{A}} e^{\theta_{s, \tilde{a}}}} e^{\theta_{s, a}}=1-\pi^{\theta}(a ; s)
$$

and if $s^{\prime}=s$ and $a^{\prime} \neq a$ then

$$
\frac{\partial \log \left(\pi^{\theta}(a ; s)\right)}{\partial \theta_{s, a^{\prime}}}=-\frac{1}{\sum_{\tilde{a} \in \mathcal{A}} e^{\theta_{s, a}}} e^{\theta_{s, a^{\prime}}}=-\pi^{\theta}\left(a^{\prime} ; s\right) .
$$

Summing up we get

$$
\frac{\partial \log \left(\pi^{\theta}(a ; s)\right)}{\partial \theta_{s^{\prime}, a^{\prime}}}=\mathbf{1}\left\{s=s^{\prime}\right\}\left(\mathbf{1}_{\left\{a=a^{\prime}\right\}}-\pi^{\theta}\left(a^{\prime} ; s^{\prime}\right)\right) .
$$

Similarly, for the linear softmax with features $\Phi(s, a)$ we have

$$
\log \left(\pi^{\theta}(a ; s)\right)=\theta \cdot \Phi(s, a)-\log \left(\sum_{a^{\prime} \in \mathcal{A}} e^{\theta \cdot \Phi\left(s, a^{\prime}\right)}\right) .
$$

The derivative can be calculated without considering specific cases, we obtain

$$
\begin{aligned}
\nabla \log \left(\pi^{\theta}(a ; s)\right) & =\Phi(s, a)-\frac{1}{\sum_{a^{\prime} \in \mathcal{A}} e^{\theta \cdot \Phi\left(s, a^{\prime}\right)}} \sum_{a^{\prime} \in \mathcal{A}} \Phi\left(s, a^{\prime}\right) e^{\theta \cdot \Phi\left(s, a^{\prime}\right)} \\
& =\Phi(s, a)-\sum_{a^{\prime} \in \mathcal{A}} \Phi\left(s, a^{\prime}\right) \frac{e^{\theta \cdot \Phi\left(s, a^{\prime}\right)}}{\sum_{a^{\prime} \in \mathcal{A}} e^{\theta \cdot \Phi\left(s, a^{\prime}\right)}} \sum_{a^{\prime} \in \mathcal{A}} \\
& =\Phi(s, a)-\sum_{a^{\prime} \in \mathcal{A}} \Phi\left(s, a^{\prime}\right) \pi^{\theta}\left(a^{\prime} ; s\right) .
\end{aligned}
$$

2. Policy Gradient Theorems

For episodic MDPs (the MDP terminates almost surely under all policies π_{θ}), we can get rid of the assumption of the existence of $\nabla J_{s}(\theta)$. Go through the proof of Theorem 5.1.6 and argue why it is enough to assume the existence of $\nabla \pi_{\theta}(\cdot ; s)$ for all $s \in \mathcal{S}$.

Solution:
Recall the proof of Theorem 5.3.6 (Policy Gradient Theorem in infinite time horizon). The first step of the proof was to show by induction that

$$
\begin{aligned}
\nabla J_{s}(\theta)= & \sum_{t=0}^{n} \sum_{s^{\prime} \in \mathcal{S}} \gamma^{t} p\left(s \rightarrow s^{\prime} ; t, \pi^{\theta}\right) \sum_{a \in \mathcal{A}_{s^{\prime}}} \nabla \pi^{\theta}\left(a ; s^{\prime}\right) Q^{\pi^{\theta}}\left(s^{\prime}, a\right) \\
& +\sum_{s^{\prime}} \gamma^{n+1} p\left(s \rightarrow s^{\prime} ; t, \pi^{\theta}\right) \nabla J_{s^{\prime}}(\theta)
\end{aligned}
$$

Now assume that the MDP is terminating, then there exists a random time T, which is almost surely finite, such that $p(\hat{s} ; \hat{s}, a=1)$ and $R(\hat{s}, a)=0$ for all $a \in \mathcal{A}_{\hat{s}}$. Intuitively, we want to argue that the RHS regarding the claim proven by induction stated above exists because $J_{\hat{s}}(\theta)$ is zero after the terminating time T. If we assume that π^{θ} is differentiable in θ, then

$$
\sum_{n=0}^{T-1} \sum_{s^{\prime} \in \mathcal{S}} \gamma^{t} p\left(s \rightarrow s^{\prime} ; t, \pi^{\theta}\right) \sum_{a \in \mathcal{A}_{s}} \nabla \pi^{\theta}\left(a ; s^{\prime}\right) Q^{\pi^{\theta}}\left(s^{\prime}, a\right)
$$

exists almost surely. It remains to show that this is equal to the derivative of $\nabla J_{s}(\theta)$. By the termination we know that $p\left(s \rightarrow \hat{s} ; T, \pi^{\theta}\right)=1$ and $J_{\hat{s}}(\theta)=0$. Thus,

$$
\begin{aligned}
& \sum_{n=0}^{T-1} \sum_{s^{\prime} \in \mathcal{S}} \gamma^{t} p\left(s \rightarrow s^{\prime} ; t, \pi^{\theta}\right) \sum_{a \in \mathcal{A}_{s}} \nabla \pi^{\theta}\left(a ; s^{\prime}\right) Q^{\pi^{\theta}}\left(s^{\prime}, a\right) \\
& =\sum_{n=0}^{T-1} \sum_{s^{\prime} \in \mathcal{S}} p\left(s \rightarrow s^{\prime} ; t, \pi^{\theta}\right) \sum_{a \in \mathcal{A}_{s}} \nabla \pi^{\theta}\left(a ; s^{\prime}\right) Q^{\pi^{\theta}}\left(s^{\prime}, a\right)+\sum_{s^{\prime}} \gamma^{n+1} p\left(s \rightarrow s^{\prime} ; T, \pi^{\theta}\right) \nabla J_{s^{\prime}}(\theta)
\end{aligned}
$$

exists almost surely. Reading the equations in the proof of Theorem 5.3.6 backwards yields that this is equal to $\nabla J_{s}(\theta)$. We are allowed to interchange the derivative and the sums as stated there, because we know that the RHS exists.

3. Baseline Trick

Show that the constant baseline b in Theorem 5.2.1 can be replaced by any deterministic statedependent baseline $b: \mathcal{S} \rightarrow \mathbb{R}$, i.e.

$$
\nabla_{\theta} J(\theta)=\mathbb{E}_{s}^{\pi^{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta}\left(\log \pi^{\theta}\left(A_{t} ; S_{t}\right)\right)\left(Q_{t}^{\pi^{\theta}}\left(S_{t}, A_{t}\right)-b\left(S_{t}\right)\right)\right]
$$

Solution:

The computation is very similar to the computations in the lecture notes. Assume $b: \mathcal{S} \rightarrow \mathbb{R}$,
then

$$
\begin{aligned}
\mathbb{E}_{s}^{\pi^{\theta}}\left[\nabla_{\theta}\left(\log \pi^{\theta}\left(A_{t} ; S_{t}\right)\right) b\left(S_{t}\right)\right] & =\sum_{s_{t} \in \mathcal{S}} \sum_{a_{t} \in \mathcal{A}_{s}} \mathbb{P}_{s}^{\pi^{\theta}}\left(S_{t}=s_{t}\right) \pi^{\theta}\left(a_{t} ; s_{t}\right) \nabla_{\theta}\left(\log \pi^{\theta}\left(a_{t} ; s_{t}\right)\right) b\left(s_{t}\right) \\
& =\sum_{s_{t} \in \mathcal{S}} \mathbb{P}_{s}^{\pi^{\theta}}\left(S_{t}=s_{t}\right) b\left(s_{t}\right) \sum_{a_{t} \in \mathcal{A}_{s}} \nabla_{\theta} \pi^{\theta}\left(a_{t} ; s_{t}\right) \\
& =\sum_{s_{t} \in \mathcal{S}} \mathbb{P}_{s}^{\pi^{\theta}}\left(S_{t}=s_{t}\right) b\left(s_{t}\right) \nabla_{\theta} \underbrace{\sum_{a_{t} \in \mathcal{A}} \pi^{\theta}\left(a_{t} ; s_{t}\right)}_{=1}=0 .
\end{aligned}
$$

If the baseline remains unaffected by the action, we can express the baseline separately from the summation over a. This condition is sufficient for the trick to be effective.

