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1. SoftMax parameterisation

Show for the tabular softmax parametrisation from Example 5.0.2 that
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and for the linear softmax with features ®(s,a)

Viog(n(a; s)) = ®(s,a) — Zﬂg(a'; 5)®(s,ad).

Solution:
By the definition of the tabular softmazx parametrisation (7%(a; s) = %) we have
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Summing up we get
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Similarly, for the linear softmax with features ®(s,a) we have

log(n®(a; s)) = 0- ®(s,a) — log( Y /P,
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The derivative can be calculated without considering specific cases, we obtain
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2. Policy Gradient Theorems

For episodic MDPs (the MDP terminates almost surely under all policies 7y), we can get rid of
the assumption of the existence of VJ,(#). Go through the proof of Theorem 5.1.6 and argue
why it is enough to assume the existence of Vmy(-; s) for all s € S.

Solution:

Recall the proof of Theorem 5.3.6 (Policy Gradient Theorem in infinite time horizon). The first
step of the proof was to show by induction that
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+ Z’y"“p(s — 55 t, 1)V (6).
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Now assume that the MDP 1is terminating, then there exists a random time T, which is almost
surely finite, such that p(8;8,a = 1) and R(8,a) =0 for all a € A;. Intuitively, we want to argue
that the RHS regarding the claim proven by induction stated above exists because Jz(0) is zero

after the terminating time T. If we assume that ©° is differentiable in 6, then
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exists almost surely. It remains to show that this is equal to the derivative of VJs(0). By the
termination we know that p(s — 5;T, %) =1 and J5(0) = 0. Thus,
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exists almost surely. Reading the equations in the proof of Theorem 5.3.6 backwards yields that

this is equal to VJs(0). We are allowed to interchange the derivative and the sums as stated

there, because we know that the RHS exists.

3. Baseline Trick

Show that the constant baseline b in Theorem 5.2.1 can be replaced by any deterministic state-
dependent baseline b : § — IR, i.e.
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Solution:

The computation is very similar to the computations in the lecture notes. Assume b : S — IR,



then
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If the baseline remains unaffected by the action, we can express the baseline separately from the

summation over a. This condition is sufficient for the trick to be effective.



