

Prof. Dr. Leif Döring André Ferdinand, Sara Klein 9. So

9. Solution Sheet

1. Proofs for *T*-step MDPs

Prove the following claims from the lecture by comparing with the discounted counterpart.

a) Proposition 3.4.4: Given a Markovian policy $\pi = (\pi_t)_{t \in D}$ and a *T*-step Markov decision problem. Then the following relation between the state and state-action value function hold

$$V_t^{\pi}(s) = \sum_{a \in \mathcal{A}_s} \pi_t(a; s) Q_t^{\pi}(s, a),$$
$$Q_t^{\pi}(s, a) = r(s, a) + \sum_{s' \in \mathcal{S}} p(s'; s, a) V_{t+1}^{\pi}(s')$$

for all t < T. In particular (plugging-in), the Bellman expectation equations

$$V_t^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_t(a; s) \Big[r(s, a) + \sum_{s' \in \mathcal{S}} p(s'; s, a) V_{t+1}^{\pi}(s') \Big],$$
$$Q_t^{\pi}(s, a) = r(s, a) + \sum_{s' \in \mathcal{S}} \sum_{a' \in \mathcal{A}_s} p(s'; s, a) \pi_t(a; s') Q_{t+1}^{\pi}(s', a')$$

hold.

Solution:

By the definition of the time-state value function we have

$$\begin{aligned} V_t^{\pi}(s) &= \mathbb{E}_s^{\hat{\pi}} \Big[\sum_{t'=0}^{T-t-1} R_{t'+1} \Big] = \sum_{a \in \mathcal{A}} \pi_t(a;s) \mathbb{E}_s^{\hat{\pi}} \Big[\sum_{t'=0}^{T-t-1} R_{t'+1} | A_0 = a \Big] \\ &= \sum_{a \in \mathcal{A}} \pi_t(a;s) \mathbb{E}_s^{\hat{\pi}_a} \Big[\sum_{t'=0}^{T-t-1} R_{t'+1} \Big] = \sum_{a \in \mathcal{A}} \pi_t(a;s) Q_t^{\pi}(s,a), \end{aligned}$$

where $\hat{\pi}$ is π shifted by t, i.e. $\hat{\pi}_0 = \pi_t, \dots, \hat{\pi}_{T-t-1} = \pi_{T-1}$.

Reinforcement Learning

For the time-state-action value function we have that

$$\begin{aligned} Q_t^{\pi}(s,a) &= \mathbb{E}_s^{\hat{\pi}_a} \Big[\sum_{t'=0}^{T-t-1} R_{t'+1} \Big] \\ &= r(s,a) + \mathbb{E}_s^{\hat{\pi}_a} \Big[\sum_{t'=1}^{T-t-1} R_{t'+1} \Big] \\ &= r(s,a) + \sum_{s' \in \mathcal{S}} \mathbb{P}_s^{\hat{\pi}_a} (S_1 = s') \mathbb{E}_s^{\hat{\pi}_a} \Big[\sum_{t'=1}^{T-t-1} R_{t'+1} | S_1 = s' \Big] \\ &= r(s,a) + \sum_{s' \in \mathcal{S}} p(s'\,;\,s,a) \mathbb{E}_{s'}^{\tilde{\pi}} \Big[\sum_{t'=0}^{T-(t+1)-1} R_{t'+1} \Big] \\ &= r(s,a) + \sum_{s' \in \mathcal{S}} p(s'\,;\,s,a) V_{t+1}^{\pi}(s'), \end{aligned}$$

where $\hat{\pi}$ is defined as above and $\tilde{\pi}$ is π shifted by t + 1.

- b) Lemma 3.4.6: The following holds for the optimal time-state value function and the optimal time-state-action value function for any $s \in S$:
 - (i) $V_t^*(s) = \max_{a \in \mathcal{A}_s} Q_t^*(s, a)$ for all $t \le T 1$. Solution:

Similar to the discounted infinite time MDP we have

$$\begin{split} \max_{a \in \mathcal{A}} Q_t^*(s, a) &= \max_{a \in \mathcal{A}} \sup_{\pi \in \Pi_t^{T-1}} Q_t^{\pi}(s, a) \\ &= \sup_{\pi \in \Pi_t^{T-1}} \max_{a \in \mathcal{A}} Q_t^{\pi}(s, a) \\ &= \sup_{\pi \in \Pi_t^{T-1}} \max_{a \in \mathcal{A}} \mathbb{E}_s^{\pi^a} [\sum_{t'=0}^{T-t-1} R_{t'+1}] \\ &= \sup_{\pi \in \Pi_t^{T-1}} \sup_{\pi \in \Pi} \mathbb{E}_s^{(\tilde{\pi}, \pi_{t+1}, \dots, \pi_{T-1})} [\sum_{t'=0}^{T-t-1} R_{t'+1}] \\ &= \sup_{\pi \in \Pi_t^{T-1}} \mathbb{E}_s^{\pi} [\sum_{t'=0}^{T-t-1} R_{t'+1}] \\ &= \sup_{\pi \in \Pi_t^{T-1}} V_t^{\pi}(s). \end{split}$$

We can replace $\max_{a \in \mathcal{A}} by \sup_{\tilde{\pi} \in \Pi} in$ the forth equation by the same reason as in the infinite time case:

' \leq ': is always true (max \leq sup), because all deterministic policies are included in Π .

 \geq : we have that

$$\mathbb{E}_{s}^{(\tilde{\pi},\pi)} [\sum_{t'=0}^{T-t-1} R_{t'+1}] = \sum_{a \in \mathcal{A}} \tilde{\pi}(a|s) \mathbb{E}_{s}^{(\pi^{a})} [\sum_{t'=0}^{T-t-1} R_{t'+1}]$$

$$\leq \max_{a \in \mathcal{A}} \mathbb{E}_{s}^{(\pi^{a})} [\sum_{t'=0}^{T-t-1} R_{t'+1}] \sum_{a \in \mathcal{A}} \tilde{\pi}(a|s)$$

$$= \max_{a \in \mathcal{A}} \mathbb{E}_{s}^{(\pi^{a})} [\sum_{t'=0}^{T-t-1} R_{t'+1}].$$

And therefore

$$\sup_{\tilde{\pi}\in\Pi} \mathbb{E}_{s}^{(\tilde{\pi},\pi)} [\sum_{t'=0}^{T-t-1} R_{t'+1}] \le \max_{a\in\mathcal{A}} \mathbb{E}_{s}^{(\pi^{a})} [\sum_{t'=0}^{T-t-1} R_{t'+1}].$$

(ii) $Q_t^*(s, a) = r(s, a) + \sum_{s' \in S} p(s'; s, a) V_{t+1}^*(s')$ for all t < T - 1. Solution:

Using a) this follows directly by

$$\begin{aligned} Q_t^*(s,a) &= \sup_{\pi \in \Pi_t^T} Q_t^{\pi}(s,a) \\ &= \sup_{\pi \in \Pi_t^T} (r(s,a) + \sum_{s' \in \mathcal{S}} p(s';s,a) V_{t+1}^{\pi}(s')) \\ &= \sup_{\pi \in \Pi_{t+1}^T} (r(s,a) + \sum_{s' \in \mathcal{S}} p(s';s,a) V_{t+1}^{\pi}(s')) \\ &= r(s,a) + \sum_{s' \in \mathcal{S}} p(s';s,a) \sup_{\pi \in \Pi_{t+1}^T} V_{t+1}^{\pi}(s') \\ &= r(s,a) + \sum_{s' \in \mathcal{S}} p(s';s,a) V_{t+1}^*(s'). \end{aligned}$$

2. Example: T-step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is m = 3 and the damand distribution is given by $\mathbb{P}(D_t = d) = p_d$ with $p_0 = p_2 = \frac{1}{4}, p_1 = \frac{1}{2}$. Suppose the revenue function f, ordering cost function o and storage cost function h are given by

$$f: \mathbb{N}_0 \to \mathbb{R}, \ x \mapsto 9x,$$
$$o: \mathbb{N}_0 \to \mathbb{R}, \ x \mapsto 2x,$$
$$h: \mathbb{N}_0 \to \mathbb{R}, \ x \mapsto 2+x.$$

a) Set up the transition matrix $p(s_{t+1}; s_t, a_t)$ in a table, such that every $s_t + a_t$ maps to the probability to land in s_{t+1} , and the reward function $r(s_t, a_t, s_{t+1})$ for this example.

Solution:

The transition matrix is given as follows

$(s+a)\backslash s'$	0	1	2	3
0	1	0	0	0
1	$\frac{3}{4}$	$\frac{1}{4}$	0	0
2	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0
3	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

The reward function $R(s_t, a_t, s_{t+1}) = f(s_t + a_t - s_{t+1}) - o(a_t) - h(a_t + s_t)$ is given by

$$R(s_t, a_t, s_{t+1}) = 9(s_t + a_t - s_{t+1}) - 2a_t - 2 - (s_t + a_t) = 8s_t + 6a_t - 9s_{t+1} - 2.$$

b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal strategy for a one time step MDP?

Solution:

The expected reward is given by

$$\begin{split} r(s,a) &= \sum_{r \in \mathcal{R}} rp(\mathcal{S} \times \{r\} \, ; \, s, a) = \sum_{r \in \mathcal{R}} \sum_{s' \in \mathcal{S}} p(\{s'\} \times \{r\} \, ; \, s, a)r \\ &= \sum_{s' \in \mathcal{S}} p(s'; s, a) R(s, a, s'), \end{split}$$

because the reward is deterministic for given s, a, s'. The reward table is then $s \mid a \mid 0 \mid 1 \mid 2 \mid 2 \mid 3$

s	$a \setminus a$	0	1	2	3
0		-2	$\frac{7}{4}$	1	-2
1		$\frac{15}{4}$	3	0	x
2	2	5	2	x	x
3	;	4	x	x	x

c) Suppose now you can play a 3-step MDP, hence you can order ice cream 3 times in t = 0, 1, 2. What is the optimal strategy for this finite time horizon MDP? Calculate the optimal state value, state-action value functions and the optimal policies using the greedy policy improvement algorithm from the lecture.

Hint: Use backward induction.

Solution:

We have as inition condition $V_3^* \equiv 0$ and $Q_2^* \equiv r$. We follow from Q_2^* that the optimal policy is

$$\pi_2^*(1;0) = 1, \quad \pi_2^*(0;1) = 1, \quad \pi_2^*(0;2) = 1, \quad \pi_2^*(0;3) = 1.$$

The value function $V_2^*(s) = \max_a Q_2^*(s, a)$, are the red marked values in the reward table of b).

It follows by

$$Q_1^*(s,a) = r(s,a) + \sum_{s' \in \mathcal{S}} p(s';s,a) V_2^*(s')$$

that Q_1^* is given by				
s ackslash a	0	1	2	3
0	$-\frac{1}{4}$	$\frac{61}{16}$	$\frac{67}{16}$	$\frac{9}{4}$
1	$\frac{93}{16}$	$\frac{99}{16}$	$\frac{17}{4}$	x
2	$\frac{131}{16}$	$\frac{25}{4}$	x	x
3	$\frac{33}{4}$	x	x	x

We follow from Q_1^* that the optimal policy is

$$\pi_1^*(2;0) = 1, \quad \pi_1^*(1;1) = 1, \quad \pi_1^*(0;2) = 1, \quad \pi_1^*(0;3) = 1.$$

The value function $V_1^*(s) = \max_a Q_1^*(s, a)$ are the red numbers in the table. For the last timestep:

$$Q_0^*(s, a) = r(s, a) + \sum_{s' \in \mathcal{S}} p(s'; s, a) V_1^*(s')$$

that Q_0^* is given by

•0 5	0				
$s \backslash a$	0	1	2	3	
0	$\frac{35}{26}$	$\frac{413}{64}$	$\frac{231}{32}$	$\frac{203}{32}$	
1	$\frac{605}{64}$	$\frac{295}{32}$	$\frac{331}{32}$	x	
2	$\frac{359}{32}$	$\frac{331}{32}$	x	x	
3	$\frac{395}{32}$	x	x	x	
We follow from O^* that the entire of relieve is					

We follow from Q_1^* that the optimal policy is

 $\pi_0^*(2;0) = 1, \quad \pi_0^*(2;1) = 1, \quad \pi_0^*(0;2) = 1, \quad \pi_0^*(0;3) = 1.$

Finally we have that the red marked numbers in the last table are the optimal value function V_0^* of this MDP.