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1. Proofs for T -step MDPs

Prove the following claims from the lecture by comparing with the discounted counterpart.

a) Proposition 3.4.4: Given a Markovian policy π = (πt)t∈D and a T -step Markov decision

problem. Then the following relation between the state and state-action value function

hold

V π
t (s) =

∑
a∈As

πt(a ; s)Q
π
t (s, a),

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s

′)

for all t < T . In particular (plugging-in), the Bellman expectation equations

V π
t (s) =

∑
a∈A

πt(a ; s)
[
r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s

′)
]
,

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

∑
a′∈As

p(s′ ; s, a)πt(a ; s
′)Qπ

t+1(s
′, a′)

hold.

Solution:

By the definition of the time-state value function we have

V π
t (s) = IEπ̂

s

[ T−t−1∑
t′=0

Rt′+1

]
=

∑
a∈A

πt(a; s)IE
π̂
s

[ T−t−1∑
t′=0

Rt′+1|A0 = a
]

=
∑
a∈A

πt(a; s)IE
π̂a
s

[ T−t−1∑
t′=0

Rt′+1

]
=

∑
a∈A

πt(a; s)Q
π
t (s, a),

where π̂ is π shifted by t, i.e. π̂0 = πt, . . . , π̂T−t−1 = πT−1.
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For the time-state-action value function we have that

Qπ
t (s, a) = IEπ̂a

s

[ T−t−1∑
t′=0

Rt′+1

]

= r(s, a) + IEπ̂a
s

[ T−t−1∑
t′=1

Rt′+1

]

= r(s, a) +
∑
s′∈S

Pπ̂a
s (S1 = s′)IEπ̂a

s

[ T−t−1∑
t′=1

Rt′+1|S1 = s′
]

= r(s, a) +
∑
s′∈S

p(s′ ; s, a)IEπ̃
s′

[ T−(t+1)−1∑
t′=0

Rt′+1

]
= r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s

′),

where π̂ is defined as above and π̃ is π shifted by t+ 1.

b) Lemma 3.4.6: The following holds for the optimal time-state value function and the optimal

time-state-action value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As Q

∗
t (s, a) for all t ≤ T − 1.

Solution:

Similar to the discounted infinite time MDP we have

max
a∈A

Q∗
t (s, a) = max

a∈A
sup

π∈ΠT−1
t

Qπ
t (s, a)

= sup
π∈ΠT−1

t

max
a∈A

Qπ
t (s, a)

= sup
π∈ΠT−1

t

max
a∈A

IEπa

s [

T−t−1∑
t′=0

Rt′+1]

= sup
π∈ΠT−1

t

sup
π̃∈Π

IE
(π̃,πt+1,...,πT−1)
s [

T−t−1∑
t′=0

Rt′+1]

= sup
π∈ΠT−1

t

IEπ
s [

T−t−1∑
t′=0

Rt′+1]

= sup
π∈ΠT−1

t

V π
t (s).

We can replace maxa∈A by supπ̃∈Π in the forth equation by the same reason as in the

infinite time case:

’≤’: is always true (max ≤ sup), because all deterministic policies are included in Π.
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’≥’: we have that

IE(π̃,π)
s [

T−t−1∑
t′=0

Rt′+1] =
∑
a∈A

π̃(a|s)IE(πa)
s [

T−t−1∑
t′=0

Rt′+1]

≤ max
a∈A

IE(πa)
s [

T−t−1∑
t′=0

Rt′+1]
∑
a∈A

π̃(a|s)

= max
a∈A

IE(πa)
s [

T−t−1∑
t′=0

Rt′+1].

And therefore

sup
π̃∈Π

IE(π̃,π)
s [

T−t−1∑
t′=0

Rt′+1] ≤ max
a∈A

IE(πa)
s [

T−t−1∑
t′=0

Rt′+1].

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s
′) for all t < T − 1.

Solution:

Using a) this follows directly by

Q∗
t (s, a) = sup

π∈ΠT
t

Qπ
t (s, a)

= sup
π∈ΠT

t

(r(s, a) +
∑
s′∈S

p(s′; s, a)V π
t+1(s

′))

= sup
π∈ΠT

t+1

(r(s, a) +
∑
s′∈S

p(s′; s, a)V π
t+1(s

′))

= r(s, a) +
∑
s′∈S

p(s′; s, a) sup
π∈ΠT

t+1

V π
t+1(s

′)

= r(s, a) +
∑
s′∈S

p(s′; s, a)V ∗
t+1(s

′).

2. Example: T -step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(Dt = d) = pd with p0 = p2 = 1
4 , p1 = 1

2 .

Suppose the revenue function f , ordering cost function o and storage cost function h are given

by

f : IN0 → IR, x 7→ 9x,

o : IN0 → IR, x 7→ 2x,

h : IN0 → IR, x 7→ 2 + x.

a) Set up the transition matrix p(st+1; st, at) in a table, such that every st + at maps to the

probability to land in st+1, and the reward function r(st, at, st+1) for this example.
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Solution:

The transition matrix is given as follows

(s+ a)\s′ 0 1 2 3

0 1 0 0 0

1 3
4

1
4 0 0

2 1
4

1
2

1
4 0

3 0 1
4

1
2

1
4

The reward function R(st, at, st+1) = f(st + at − st+1)− o(at)− h(at + st) is given by

R(st, at, st+1) = 9(st + at − st+1)− 2at − 2− (st + at) = 8st + 6at − 9st+1 − 2.

b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?

Solution:

The expected reward is given by

r(s, a) =
∑
r∈R

rp(S × {r} ; s, a) =
∑
r∈R

∑
s′∈S

p({s′} × {r} ; s, a)r

=
∑
s′∈S

p(s′; s, a)R(s, a, s′),

because the reward is deterministic for given s, a, s′. The reward table is then

s\a 0 1 2 3

0 −2 7
4 1 −2

1 15
4 3 0 x

2 5 2 x x

3 4 x x x

c) Suppose now you can play a 3-step MDP, hence you can order ice cream 3 times in t = 0, 1, 2.

What is the optimal strategy for this finite time horizion MDP? Calculate the optimal

state value, state-action value functions and the optimal policies using the greedy policy

improvement algorithm from the lecture.

Hint: Use backward induction.

Solution:

We have as inition condition V ∗
3 ≡ 0 and Q∗

2 ≡ r. We follow from Q∗
2 that the optimal

policy is

π∗
2(1; 0) = 1, π∗

2(0; 1) = 1, π∗
2(0; 2) = 1, π∗

2(0; 3) = 1.

The value function V ∗
2 (s) = maxaQ

∗
2(s, a), are the red marked values in the reward tabel of

b).

It follows by

Q∗
1(s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
2 (s

′)
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that Q∗
1 is given by

s\a 0 1 2 3

0 −1
4

61
16

67
16

9
4

1 93
16

99
16

17
4 x

2 131
16

25
4 x x

3 33
4 x x x

We follow from Q∗
1 that the optimal policy is

π∗
1(2; 0) = 1, π∗

1(1; 1) = 1, π∗
1(0; 2) = 1, π∗

1(0; 3) = 1.

The value function V ∗
1 (s) = maxaQ

∗
1(s, a) are the red numbers in the table. For the last

timestep:

Q∗
0(s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
1 (s

′)

that Q∗
0 is given by

s\a 0 1 2 3

0 35
26

413
64

231
32

203
32

1 605
64

295
32

331
32 x

2 359
32

331
32 x x

3 395
32 x x x

We follow from Q∗
1 that the optimal policy is

π∗
0(2; 0) = 1, π∗

0(2; 1) = 1, π∗
0(0; 2) = 1, π∗

0(0; 3) = 1.

Finally we have that the red marked numbers in the last table are the optimal value function

V ∗
0 of this MDP.
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