André Ferdinand, Sara Klein

9. Solution Sheet

1. Proofs for T-step MDPs

Prove the following claims from the lecture by comparing with the discounted counterpart.
a) Proposition 3.4.4: Given a Markovian policy $\pi=\left(\pi_{t}\right)_{t \in D}$ and a T-step Markov decision problem. Then the following relation between the state and state-action value function hold

$$
\begin{aligned}
V_{t}^{\pi}(s) & =\sum_{a \in \mathcal{A}_{s}} \pi_{t}(a ; s) Q_{t}^{\pi}(s, a), \\
Q_{t}^{\pi}(s, a) & =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

for all $t<T$. In particular (plugging-in), the Bellman expectation equations

$$
\begin{aligned}
V_{t}^{\pi}(s) & =\sum_{a \in \mathcal{A}} \pi_{t}(a ; s)\left[r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right)\right], \\
Q_{t}^{\pi}(s, a) & =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} \sum_{a^{\prime} \in \mathcal{A}_{s}} p\left(s^{\prime} ; s, a\right) \pi_{t}\left(a ; s^{\prime}\right) Q_{t+1}^{\pi}\left(s^{\prime}, a^{\prime}\right)
\end{aligned}
$$

hold.

Solution:

By the definition of the time-state value function we have

$$
\begin{aligned}
V_{t}^{\pi}(s) & =\mathbb{E}_{s}^{\hat{\pi}}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right]=\sum_{a \in \mathcal{A}} \pi_{t}(a ; s) \mathbb{E}_{s}^{\hat{\pi}}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1} \mid A_{0}=a\right] \\
& =\sum_{a \in \mathcal{A}} \pi_{t}(a ; s) \mathbb{E}_{s}^{\hat{\pi}_{a}}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right]=\sum_{a \in \mathcal{A}} \pi_{t}(a ; s) Q_{t}^{\pi}(s, a),
\end{aligned}
$$

where $\hat{\pi}$ is π shifted by t, i.e. $\hat{\pi}_{0}=\pi_{t}, \ldots, \hat{\pi}_{T-t-1}=\pi_{T-1}$.

For the time-state-action value function we have that

$$
\begin{aligned}
Q_{t}^{\pi}(s, a) & =\mathbb{E}_{s}^{\hat{\pi}_{a}}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \\
& =r(s, a)+\mathbb{E}_{s}^{\hat{\pi}_{a}}\left[\sum_{t^{\prime}=1}^{T-t-1} R_{t^{\prime}+1}\right] \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} \mathbb{P}_{s}^{\hat{\pi}_{a}}\left(S_{1}=s^{\prime}\right) \mathbb{E}_{s}^{\hat{\pi}_{a}}\left[\sum_{t^{\prime}=1}^{T-t-1} R_{t^{\prime}+1} \mid S_{1}=s^{\prime}\right] \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) \mathbb{E}_{s^{\prime}}^{\tilde{\pi}}\left[\sum_{t^{\prime}=0}^{T-(t+1)-1} R_{t^{\prime}+1}\right] \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right),
\end{aligned}
$$

where $\hat{\pi}$ is defined as above and $\tilde{\pi}$ is π shifted by $t+1$.
b) Lemma 3.4.6: The following holds for the optimal time-state value function and the optimal time-state-action value function for any $s \in \mathcal{S}$:
(i) $V_{t}^{*}(s)=\max _{a \in \mathcal{A}_{s}} Q_{t}^{*}(s, a)$ for all $t \leq T-1$.

Solution:
Similar to the discounted infinite time MDP we have

$$
\begin{aligned}
\max _{a \in \mathcal{A}} Q_{t}^{*}(s, a) & =\max _{a \in \mathcal{A}} \sup _{\pi \in \Pi_{t}^{T-1}} Q_{t}^{\pi}(s, a) \\
& =\sup _{\pi \in \Pi_{t}^{T-1}} \max _{a \in \mathcal{A}} Q_{t}^{\pi}(s, a) \\
& =\sup _{\pi \in \Pi_{t}^{T-1}} \max _{a \in \mathcal{A}} \mathbb{E}_{s}^{\pi^{a}}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \\
& =\sup _{\pi \in \Pi_{t}^{T-1}} \sup _{\tilde{\pi} \in \Pi} \mathbb{E}_{s}^{\left(\tilde{\pi}, \pi_{t+1}, \ldots, \pi_{T-1}\right)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \\
& =\sup _{\pi \in \Pi_{t}^{T-1}} \mathbb{E}_{s}^{\pi}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \\
& =\sup _{\pi \in \Pi_{t}^{T-1}} V_{t}^{\pi}(s) .
\end{aligned}
$$

We can replace $\max _{a \in \mathcal{A}}$ by $\sup _{\tilde{\pi} \in \Pi}$ in the forth equation by the same reason as in the infinite time case:
' \leq ': is always true ($\max \leq \sup$), because all deterministic policies are included in Π.
\geq ': we have that

$$
\begin{aligned}
\mathbb{E}_{s}^{(\tilde{\pi}, \pi)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] & =\sum_{a \in \mathcal{A}} \tilde{\pi}(a \mid s) \mathbb{E}_{s}^{\left(\pi^{a}\right)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \\
& \leq \max _{a \in \mathcal{A}} \mathbb{E}_{s}^{\left(\pi^{a}\right)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \sum_{a \in \mathcal{A}} \tilde{\pi}(a \mid s) \\
& =\max _{a \in \mathcal{A}} \mathbb{E}_{s}^{\left(\pi^{a}\right)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right]
\end{aligned}
$$

And therefore

$$
\sup _{\tilde{\pi} \in \Pi} \mathbb{E}_{s}^{(\tilde{\pi}, \pi)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right] \leq \max _{a \in \mathcal{A}} \mathbb{E}_{s}^{\left(\pi^{a}\right)}\left[\sum_{t^{\prime}=0}^{T-t-1} R_{t^{\prime}+1}\right]
$$

(ii) $Q_{t}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{*}\left(s^{\prime}\right)$ for all $t<T-1$.

Solution:
Using a) this follows directly by

$$
\begin{aligned}
Q_{t}^{*}(s, a) & =\sup _{\pi \in \Pi_{t}^{T}} Q_{t}^{\pi}(s, a) \\
& =\sup _{\pi \in \Pi_{t}^{T}}\left(r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right)\right) \\
& =\sup _{\pi \in \Pi_{t+1}^{T}}\left(r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right)\right) \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) \sup _{\pi \in \Pi_{t+1}^{T}} V_{t+1}^{\pi}\left(s^{\prime}\right) \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{*}\left(s^{\prime}\right)
\end{aligned}
$$

2. Example: T-step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is $m=3$ and the damand distribution is given by $\mathbb{P}\left(D_{t}=d\right)=p_{d}$ with $p_{0}=p_{2}=\frac{1}{4}, p_{1}=\frac{1}{2}$. Suppose the revenue function f, ordering cost function o and storage cost function h are given by

$$
\begin{aligned}
& f: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 9 x \\
& o: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 2 x \\
& h: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 2+x
\end{aligned}
$$

a) Set up the transition matrix $p\left(s_{t+1} ; s_{t}, a_{t}\right)$ in a table, such that every $s_{t}+a_{t}$ maps to the probability to land in s_{t+1}, and the reward function $r\left(s_{t}, a_{t}, s_{t+1}\right)$ for this example.

Solution:
The transition matrix is given as follows

$(s+a) \backslash s^{\prime}$	0	1	2	3
0	1	0	0	0
1	$\frac{3}{4}$	$\frac{1}{4}$	0	0
2	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0
3	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

The reward function $R\left(s_{t}, a_{t}, s_{t+1}\right)=f\left(s_{t}+a_{t}-s_{t+1}\right)-o\left(a_{t}\right)-h\left(a_{t}+s_{t}\right)$ is given by

$$
R\left(s_{t}, a_{t}, s_{t+1}\right)=9\left(s_{t}+a_{t}-s_{t+1}\right)-2 a_{t}-2-\left(s_{t}+a_{t}\right)=8 s_{t}+6 a_{t}-9 s_{t+1}-2
$$

b) Calculate the expected reward $r(s, a)$ for every state action pair. Can you guess an optimal strategy for a one time step MDP?

Solution:

The expected reward is given by

$$
\begin{aligned}
r(s, a) & =\sum_{r \in \mathcal{R}} r p(\mathcal{S} \times\{r\} ; s, a)=\sum_{r \in \mathcal{R}} \sum_{s^{\prime} \in \mathcal{S}} p\left(\left\{s^{\prime}\right\} \times\{r\} ; s, a\right) r \\
& =\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) R\left(s, a, s^{\prime}\right)
\end{aligned}
$$

because the reward is deterministic for given s, a, s^{\prime}. The reward table is then

$s \backslash a$	0	1	2	3
0	-2	$\frac{7}{4}$	1	-2
1	$\frac{15}{4}$	3	0	x
2	5	2	x	x
3	4	x	x	x

c) Suppose now you can play a 3 -step MDP, hence you can order ice cream 3 times in $t=0,1,2$. What is the optimal strategy for this finite time horizion MDP? Calculate the optimal state value, state-action value functions and the optimal policies using the greedy policy improvement algorithm from the lecture.
Hint: Use backward induction.

Solution:

We have as inition condition $V_{3}^{*} \equiv 0$ and $Q_{2}^{*} \equiv r$. We follow from Q_{2}^{*} that the optimal policy is

$$
\pi_{2}^{*}(1 ; 0)=1, \quad \pi_{2}^{*}(0 ; 1)=1, \quad \pi_{2}^{*}(0 ; 2)=1, \quad \pi_{2}^{*}(0 ; 3)=1
$$

The value function $V_{2}^{*}(s)=\max _{a} Q_{2}^{*}(s, a)$, are the red marked values in the reward tabel of b).

It follows by

$$
Q_{1}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{2}^{*}\left(s^{\prime}\right)
$$

that Q_{1}^{*} is given by

$s \backslash a$	0	1	2	3
0	$-\frac{1}{4}$	$\frac{61}{16}$	$\frac{67}{16}$	$\frac{9}{4}$
1	$\frac{93}{16}$	$\frac{99}{16}$	$\frac{17}{4}$	x
2	$\frac{131}{16}$	$\frac{25}{4}$	x	x
3	$\frac{33}{4}$	x	x	x

We follow from Q_{1}^{*} that the optimal policy is

$$
\pi_{1}^{*}(2 ; 0)=1, \quad \pi_{1}^{*}(1 ; 1)=1, \quad \pi_{1}^{*}(0 ; 2)=1, \quad \pi_{1}^{*}(0 ; 3)=1
$$

The value function $V_{1}^{*}(s)=\max _{a} Q_{1}^{*}(s, a)$ are the red numbers in the table. For the last timestep:

$$
Q_{0}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{1}^{*}\left(s^{\prime}\right)
$$

that Q_{0}^{*} is given by

$s \backslash a$	0	1	2	3
0	$\frac{35}{26}$	$\frac{413}{64}$	$\frac{231}{32}$	$\frac{203}{32}$
1	$\frac{605}{64}$	$\frac{295}{32}$	$\frac{331}{32}$	x
2	$\frac{359}{32}$	$\frac{331}{32}$	x	x
3	$\frac{395}{32}$	x	x	x

We follow from Q_{1}^{*} that the optimal policy is

$$
\pi_{0}^{*}(2 ; 0)=1, \quad \pi_{0}^{*}(2 ; 1)=1, \quad \pi_{0}^{*}(0 ; 2)=1, \quad \pi_{0}^{*}(0 ; 3)=1
$$

Finally we have that the red marked numbers in the last table are the optimal value function V_{0}^{*} of this MDP.

