ol )
R UNIVERSITAT
WY  MANNHEIM

FAKULTAT FUR WIRTSCHAFTSINFORMATIK
UND WIRTSCHAFTSMATHEMATIK

Prof. Dr. Leif Déring Reinforcement Learning
André Ferdinand, Sara Klein 9. Excercise Sheet

1. Proofs for T-step MDPs

Prove the following claims from the lecture by comparing with the discounted counterpart.

a) Proposition 3.4.4: Given a Markovian policy 7 = (m¢)tep and a T-step Markov decision
problem. Then the following relation between the state and state-action value function
hold

Vi(s) = Y mla; )Q7 (s,a),

a€A;

Q7 (s,a) = r(s,a) + Y p(s's 8,0) Vi3 (o)

s’'es
for all ¢ < T'. In particular (plugging-in), the Bellman expectation equations

Vi (s) =Y milas s) { s,a)+ > p(s'5 s,0)Vi (s )]

acA s'eS

Q7 (s,a) =1r(s,a) +ZZ i s,a)m(as 8 )QF (s, d)

s'eS a’eAs
hold.

b) Lemma 3.4.6: The following holds for the optimal time-state value function and the optimal

time-state-action value function for any s € S:
(i) Vi*(s) = maxgeq, Q;(s,a) forall t <T — 1.
(ii) Qi (s,a) =r(s,a) + > gcsp(s'; 5,a)Vy(s") forall t <T — 1.

2. Example: T-step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(D; = d) = pg with py = p2 = ivpl = %

Suppose the revenue function f, ordering cost function o and storage cost function h are given
by

f:INg— IR, x — 9z,

0:INg - IR, z — 2x,

h:INg >R, z+— 2+ x.

a) Set up the transition matrix p(siy1; 8¢, a¢) in a table, such that every s; + a; maps to the

probability to land in s;11, and the reward function 7 (s, at, s¢41) for this example.



b) Calculate the expected reward (s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?

¢) Suppose now you can play a 3-step MDP, hence you can order ice cream 4 times in ¢t = 0, 1, 2.
What is the optimal strategy for this finite time horizion MDP? Calculate the optimal
state value, state-action value functions and the optimal policies using the greedy policy
improvement algorithm from the lecture.

Hint: Use backward induction.

3. Multi Step Approximate Dynamic Programming

a) Implement Algorithm 26 of the lecture (First visit Monte Carlo for non-terminating MDPs).
b) Implement Algorithm 27 (First visit A-return algorithm) of the lecture.
c¢) Implement Algorithm 28 (Offline TD(\) policy evaluation with first-visit updates) of the

lecture.



