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1. Proofs for T -step MDPs

Prove the following claims from the lecture by comparing with the discounted counterpart.

a) Proposition 3.4.4: Given a Markovian policy π = (πt)t∈D and a T -step Markov decision

problem. Then the following relation between the state and state-action value function

hold

V π
t (s) =

∑
a∈As

πt(a ; s)Q
π
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Qπ
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for all t < T . In particular (plugging-in), the Bellman expectation equations
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hold.

b) Lemma 3.4.6: The following holds for the optimal time-state value function and the optimal

time-state-action value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As Q

∗
t (s, a) for all t ≤ T − 1.

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s
′) for all t < T − 1.

2. Example: T -step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(Dt = d) = pd with p0 = p2 = 1
4 , p1 = 1

2 .

Suppose the revenue function f , ordering cost function o and storage cost function h are given

by

f : IN0 → IR, x 7→ 9x,

o : IN0 → IR, x 7→ 2x,

h : IN0 → IR, x 7→ 2 + x.

a) Set up the transition matrix p(st+1; st, at) in a table, such that every st + at maps to the

probability to land in st+1, and the reward function r(st, at, st+1) for this example.
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b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?

c) Suppose now you can play a 3-step MDP, hence you can order ice cream 4 times in t = 0, 1, 2.

What is the optimal strategy for this finite time horizion MDP? Calculate the optimal

state value, state-action value functions and the optimal policies using the greedy policy

improvement algorithm from the lecture.

Hint: Use backward induction.

3. Multi Step Approximate Dynamic Programming

a) Implement Algorithm 26 of the lecture (First visit Monte Carlo for non-terminating MDPs).

b) Implement Algorithm 27 (First visit λ-return algorithm) of the lecture.

c) Implement Algorithm 28 (Offline TD(λ) policy evaluation with first-visit updates) of the

lecture.
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