

Reinforcement Learning

Prof. Dr. Leif Döring André Ferdinand, Sara Klein

8. Solution Sheet

1. Second version of Theorem 4.2.9 for SARSA

Show that the statement of Theorem 4.2.9 also holds if $\mathbb{E}[\varepsilon_n | \mathcal{F}_n] \neq 0$ but instead satisfies

$$\sum_{n=1}^{\infty} \alpha_i(n) \left| \mathbb{E}[\varepsilon_i(n) \,|\, \mathcal{F}_n] \right| < \infty \tag{1}$$

almost surely. It is enough to prove an improved version of Lemma 4.2.5 where the condition $\mathbb{E}[\varepsilon(t) | \mathcal{F}_t] = 0$ is replaced with

$$\sum_{n=1}^{\infty} \alpha(t) \left| \mathbb{E}[\varepsilon(t) \mid \mathcal{F}_t] \right| < \infty.$$
(2)

Apply the Robbins-Siegmund theorem to W^2 and use that $W \leq 1 + W^2$. Solution:

$$\begin{split} \mathbf{E} \begin{bmatrix} W(t+1)^2 \mid \mathcal{F}_t \end{bmatrix} &= \mathbf{E} \begin{bmatrix} (1-\alpha(t))^2 W^2(t) + \alpha^2(t)\varepsilon^2(t) + 2\alpha(t)(1-\alpha(t))W(t)\varepsilon(t) \mid \mathcal{F}_t \end{bmatrix} \\ &\leq (1-2\alpha(t) + \alpha^2(t))W^2(t) + \alpha^2(t)C + 2\alpha(t)(1-\alpha(t))(t+W^2(t)) \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \end{bmatrix} \\ &\leq (1-2\alpha(t) + \alpha^2(t))W^2(t) + \alpha^2(t)C + 2\alpha(t)(1-\alpha(t))(1+W^2(t)) \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \end{bmatrix} \\ &\leq (1-2\alpha(t) + \alpha^2(t) + 2\alpha(t) \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \mid - \underbrace{2\alpha(t)^2 \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \mid}_{\geq 0} W^2(t) \\ &+ \alpha^2(t)C + 2\alpha(t) \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \mid - \underbrace{2\alpha(t)^2 \mid \mathbf{E} [\varepsilon(t) \mid \mathcal{F}_t] \mid}_{\geq 0} \\ &\leq (1-a_t+b_t)W^2(t) + c_t, \end{split}$$

with $a_t = -2\alpha(t)$, $b_t = \alpha^2(t) + 2\alpha(t) |\mathbb{E}[\varepsilon(t) | \mathcal{F}_t]|$, and $c_t = \alpha^2(t)C + 2\alpha(t) |\mathbb{E}[\varepsilon(t) | \mathcal{F}_t]|$. Now the claim follows from Robbins-Siegmund.

2. *n*-step TD

a) Write pseudocode for *n*-step TD algorithms for evaluation of V^{π} and Q^{π} in the nonterminating case and prove the convergence by checking that using the *n*-step Bellman expectation equations

$$T_1^{\pi}V(s) = \mathbb{E}_s^{\pi} \Big[R(s, A_0) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n V(S_n) \Big]$$

and

$$T_2^{\pi}Q(s,a) = \mathbb{E}_s^{\pi^a} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n Q(S_n, A_n) \Big]$$

and the corresponding error terms fulfill the conditions of Theorem 4.2.9. Note that the algorithm only starts to update after the MDP ran for n steps. Can you also write down a version in the terminating case?

Solution: The algorithms in the non terminating case are 1 and 2. The Algorithm in the

Algorithm 1: *n*-step TD for evaluation of V^{π}

Data: Policy $\pi \in \Pi_{\mathcal{S}}$ **Result:** Approximation $V \approx V^{\pi}$ Initialize $V \equiv 0$ Initialise s arbitrarily while not converged do Set $s^* = s$ Initialise R = 0for i = 0, ..., n - 1 do $a \sim \pi(\cdot; s)$ Sample reward $R(s, a_i)$ Set $R = R + \gamma^i R(s, a)$ Sample $s' \sim p(\cdot; s, a)$ s = s'end Determine stepsize α Update $V(s^*) = V(s^*) + \alpha (R + \gamma^n V(s) - V(s^*))$ end

terminating case would be as stated in algorithm 3. We added a break in the for loop as we cannot continue in a terminating state. As we only which to update after n steps, we will not update V after the break. So it can happen that we never update the value function, if we never run n steps. Next we come to the prove of convergence. Therefore we have to check that the operators T_1 and T_2 are contractions and that the error terms

$$\varepsilon_s(n) := R(s, A_0) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n V(S_n) - \mathbb{E}_s^{\pi} \Big[R(s, A_0) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n V(S_n) \Big]$$

$$\varepsilon_{s,a}(n) := R(s, a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n Q(S_n, A_n) - \mathbb{E}_s^{\pi^a} \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n Q(S_n, A_n) \Big]$$

fulfill the conditions of Theorem 4.2.9. The condition on the error terms is as always given

Algorithm 2: *n*-step TD for evaluation of Q^{π}

Data: Policy $\pi \in \Pi_{\mathcal{S}}$ **Result:** Approximation $Q \approx Q^{\pi}$ Initialize $Q \equiv 0$ Initialise s, a arbitrarily while not converged do Set $s^* = s$ and $a^* = a$ Initialise R = 0for i = 0, ..., n - 1 do Sample reward R(s, a)Set $R = R + \gamma^i R(s, a)$ Sample $s' \sim p(\cdot; s, a)$ Sample $a' \sim \pi(\cdot | s')$ $s = s', a = a^*$ \mathbf{end} Determine stepsize α Update $Q(s^*, a^*) = Q(s^*, a^*) + \alpha(R + \gamma^n Q(s, a) - Q(s^*, a^*))$ \mathbf{end}

by definition and bounded rewards. For the contractions we see that

$$\begin{aligned} \|T_{1}(V_{1}) - T_{1}(V_{2})\|_{\infty} \\ &= \max_{s \in \mathcal{S}} |T_{1}(V_{1})(s) - T_{1}(V_{2})(s)| \\ &= \max_{s \in \mathcal{S}} |\mathbb{E}_{s}^{\pi} \Big[R(s, A_{0}) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} V_{1}(S_{n}) \\ &- \mathbb{E}_{s}^{\pi} \Big[R(s, A_{0}) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} V_{2}(S_{n}) \Big] | \\ &\leq \max_{s \in \mathcal{S}} \mathbb{E}_{s}^{\pi} \Big[\gamma^{n} |V_{1}(S_{n}) - V_{2}(S_{n})| \Big] \\ &\leq \gamma^{n} \|V_{1} - V_{2}\|_{\infty} \end{aligned}$$

Algorithm 3: *n*-step TD for evaluation of V^{π} for terminating MDPs

```
Data: Policy \pi \in \Pi_{\mathcal{S}}
Result: Approximation V \approx V^{\pi}
Initialize V \equiv 0
while not converged do
    Initialise s arbitrarily
    while s not terminal do
        Set s^* = s
        Initialise R = 0
        for i = 0, ..., n - 1 do
            if s terminal then
             | Break and beginn with a new while-loop
            \mathbf{end}
            a \sim \pi(\cdot; s)
            Sample reward R(s, a_i)
            Set R = R + \gamma^i R(s, a)
            Sample s' \sim p(\cdot; s, a)
            s = s'
        end
        Determine stepsize \alpha
        Update V(s^*) = V(s^*) + \alpha(R + \gamma^n V(s) - V(s^*))
    \mathbf{end}
end
```

and similar for T_2

$$\begin{aligned} \|T_{2}(Q_{1}) - T_{2}(Q_{2})\|_{\infty} \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |T_{2}(Q_{1})(s, a) - T_{2}(Q_{2})(s, a)| \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |\mathbb{E}_{s}^{\pi^{a}} \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} Q_{1}(S_{n}, A_{n}) \Big] \\ &- \mathbb{E}_{s}^{\pi^{a}} \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} Q_{2}(S_{n}, A_{n}) \Big] \\ &\leq \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} \mathbb{E}_{s}^{\pi^{a}} \Big[\gamma^{n} |Q_{1}(S_{n}, A_{n}) - Q_{2}(S_{n}, A_{n})| \Big] \\ &\leq \gamma^{n} \|Q_{1} - Q_{2}\|_{\infty}. \end{aligned}$$

b) Write pseudocode for an n-step SARSA control algorithm in the non-terminating case. Try to prove convergence in the same way we did for 1-step SARSA in Theorem 4.3.6. Solution:

Convergence of n-step SARSA in the non-terminating case. Assume that Q_0 has bounded

Algorithm 4: *n*-step SARSA

Result: Approximations $Q \approx Q^*$, $\pi = \text{greedy}(Q) \approx \pi^*$ Initialize Q, e.g. $Q \equiv 0$ Initialise s, a arbitrarily, e.g. uniform. while not converged do Set $s^* = s$ and $a^* = a$ Initialise R = 0Chose new policy π from Q (e.g. ϵ -greedy) for i = 0, ..., n - 1 do Sample reward R(s, a)Set $R = R + \gamma^i R(s, a)$ Sample $s' \sim p(\cdot ; s, a)$ Sample $a' \sim \pi(\cdot|s')$ s = s', a = a'end Determine stepsize α Update $Q(s^*, a^*) = Q(s^*, a^*) + \alpha(R + \gamma^n Q(s, a) - Q(s^*, a^*))$ end

entries and and the step-sizes satisfy the Robbins-Monro conditions. If furthermore the probabilities $p_n(s, a)$ the the policy π_{n+1} is greedy satisfies are such that

$$\sum_{n=1}^{\infty} \alpha_n(s,a) p_n(s,a) < \infty \quad a.s.$$

for all (s, a). Then n-step SARSA algorithm converges to Q^* almost surely.

Proof: We denote by $(\tilde{S}_k, \tilde{A}_k)_{k=0}^{\infty}$ the sequence of state-action pairs obtained from the algorithm. We denote with $I = \{0, n, 2n, 3n, ...\}$ the set of indices where the Q-function is updated, for $i \in I$ we have the update

$$Q_{i+n}(\tilde{S}_i, \tilde{A}_i) = Q_i(\tilde{S}_i, \tilde{A}_i) + \alpha_i(\tilde{S}_i, \tilde{A}_i)(T_n^*Q_i(\tilde{S}_i, \tilde{A}_i) - Q_i(\tilde{S}_i, \tilde{A}_i) + \epsilon_i(\tilde{S}_i, \tilde{A}_i))$$

where

$$T_{n}^{*}Q(s,a) = \mathbb{E}_{s}^{\pi^{a}(\pi \text{ greedy } Q^{*})} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t},A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q(S_{n},\hat{a}) \Big]$$

and

$$\epsilon_i(\tilde{S}_i, \tilde{A}_i) = \sum_{k=0}^{n-1} \gamma^k R(\tilde{S}_{i+k}, \tilde{A}_{i+k}) + \gamma^n Q_i(\tilde{S}_{i+n}, \tilde{A}_{i+n}) - T_n^* Q_i(s, a)$$

For convergence we have to prove that:

- (i) the operator T_n^* is a contraction,
- (ii) Q^* is a fixpoint of T_n^* ,
- (iii) The error term fulfills the assumptions of the generalised stochastic approximation theorem from Exercise 1 above.

For (i)we have similar to T_2^{π} of part a), that

$$\begin{split} \|T_{n}^{*}(Q_{1}) - T_{n}^{*}(Q_{2})\|_{\infty} \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |T_{n}^{*}(Q_{1})(s, a) - T_{n}^{*}(Q_{2})(s, a)| \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |\mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q^{*}) \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q_{1}(S_{n}, \hat{a}) \Big] \\ &- \mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q^{*}) \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q_{2}(S_{n}, \hat{a}) \Big] | \\ &= \gamma^{n} \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |\mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q^{*}) \Big[\max_{\hat{a} \in \mathcal{A}} Q_{1}(S_{n}, \hat{a}) - \max_{\hat{a} \in \mathcal{A}} Q_{2}(S_{n}, \hat{a}) \Big] | \\ &\leq \gamma^{n} \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} \mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q^{*}) \Big[\max_{\hat{a} \in \mathcal{A}} |Q_{1}(S_{n}, \hat{a}) - Q_{2}(S_{n}, \hat{a})| \Big] \\ &\leq \gamma^{n} \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} \mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q^{*}) \Big[\max_{\hat{a} \in \mathcal{A}} |Q_{1}(S_{n}, \hat{a}) - Q_{2}(S_{n}, \hat{a})| \Big] \\ &\leq \gamma^{n} \|Q_{1} - Q_{2}\|_{\infty}. \end{split}$$

We show (ii) by induction over n. We have that for n = 1 that T_1^* is the normal Bellman opator, i.e. $Q^* = T_1^*Q^*$. Assume $Q^* = T_n^*Q^*$, then for n + 1 we conclude

$$\begin{split} Q^*(s,a) &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n \max_{\hat{a} \in \mathcal{A}} Q^*(S_n, \hat{a}) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n \sum_{a \in \mathcal{A}} \pi^*(a; S_n) Q^*(S_n, a) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n Q^*(S_n, A_n) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n \Big(R(S_n, A_n) \\ &+ \gamma \sum_{s' \in \mathcal{S}} p(s'; S_n, A_n) \max_{\hat{a} \in \mathcal{A}} Q^*(s', \hat{a}) \Big) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^n \gamma^t R(S_t, A_t) + \gamma^{n+1} \sum_{s' \in \mathcal{S}} p(s'; S_n, A_n) \max_{\hat{a} \in \mathcal{A}} Q^*(s', \hat{a}) \Big) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^n \gamma^t R(S_t, A_t) + \gamma^{n+1} \max_{\hat{a} \in \mathcal{A}} Q^*(S_{n+1}, \hat{a}) \Big] \\ &= \mathbb{E}_s^{\pi^a (\pi \ greedy \ Q^*)} \Big[R(s,a) + \sum_{t=1}^n \gamma^t R(S_t, A_t) + \gamma^{n+1} \max_{\hat{a} \in \mathcal{A}} Q^*(S_{n+1}, \hat{a}) \Big] \end{split}$$

For the last claim we first note, that $\epsilon(s, a) = 0$ if $(s, a) \neq (\tilde{S}_i, \tilde{A}_i)$, $i \in I$. We enumerate the elements in I by the index j, i.e j = i/n for $i \in I$ and we have that the next element in I is $j + 1 = \frac{i}{n} + 1 = \frac{i+n}{n}$. Further we denote by $\tilde{\mathcal{F}}_k$ the σ -algebra generated by the process $(\tilde{S}_k, \tilde{A}_k)$. Then the errors ϵ_i are $\mathcal{F}_{j+1} = \tilde{\mathcal{F}}_{i+2n-1}$ mesurable for every $i \in I$. We define for ever $j \geq 0$ the filtration $\mathcal{F}_j = \tilde{\mathcal{F}}_{j(n+1)-1}$. Then $\epsilon_{j \cdot n}$ is \mathcal{F}_{j+1} measurable and we follow

$$\begin{split} & \mathbb{E}[\epsilon_{j \cdot n}(\tilde{S}_{j \cdot n}, \tilde{A}_{j \cdot n}) | \mathcal{F}_{j}] \\ &= \mathbb{E}[\epsilon_{i}(\tilde{S}_{i}, \tilde{A}_{i}) | \mathcal{F}_{i+n-1}] \\ &= \mathbb{E}[\mathbf{1}_{\{\pi_{i+n}(\cdot; \tilde{S}_{i+n}) \text{ is greedy}\}} \Big(\sum_{k=0}^{n-1} \gamma^{k} R(\tilde{S}_{i+k}, \tilde{A}_{i+k}) + \gamma^{n} Q_{i}(\tilde{S}_{i+n}, \tilde{A}_{i+n}) - T_{n}^{*} Q_{i}(s, a) \Big) | \mathcal{F}_{i+n-1}] \\ &+ \mathbb{E}[\mathbf{1}_{\{\pi_{i+n}(\cdot; \tilde{S}_{i+n}) \text{ is non-greedy}\}} \Big(\sum_{k=0}^{n-1} \gamma^{k} R(\tilde{S}_{i+k}, \tilde{A}_{i+k}) + \gamma^{n} Q_{i}(\tilde{S}_{i+n}, \tilde{A}_{i+n}) - T_{n}^{*} Q_{i}(s, a) \Big) | \mathcal{F}_{i+n-1}] \end{split}$$

Do to the choice

$$T_{n}^{*}Q(s,a) = \mathbb{E}_{s}^{\pi^{a}(\pi \text{ greedy } Q^{*})} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t},A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q(S_{n},\hat{a}) \Big]$$

we do not get that the error is 0 for the greedy policy choice. We would need

$$T_n^*Q(s,a) = \mathbb{E}_s^{\pi^a (\pi \text{ greedy } Q)} \Big[R(s,a) + \sum_{t=1}^{n-1} \gamma^t R(S_t, A_t) + \gamma^n \max_{\hat{a} \in \mathcal{A}} Q(S_n, \hat{a}) \Big]$$

as bellman operator. Unfortunetly then we can no longer show that T_n^* is a contraction:

$$\begin{split} \|T_{n}^{*}(Q_{1}) - T_{n}^{*}(Q_{2})\|_{\infty} \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |T_{n}^{*}(Q_{1})(s, a) - T_{n}^{*}(Q_{2})(s, a)| \\ &= \max_{s \in \mathcal{S}, a \in \mathcal{A}_{s}} |\mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q_{1}) \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q_{1}(S_{n}, \hat{a}) \Big] \\ &- \mathbb{E}_{s}^{\pi^{a}} (\pi \ greedy \ Q_{1}) \Big[R(s, a) + \sum_{t=1}^{n-1} \gamma^{t} R(S_{t}, A_{t}) + \gamma^{n} \max_{\hat{a} \in \mathcal{A}} Q_{2}(S_{n}, \hat{a}) \Big] |, \end{split}$$

cannot be written in one expectation due to different measures.