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1. Second version of Theorem 4.2.9 for SARSA

Show that the statement of Theorem 4.2.9 also holds if IE[εn | Fn] ̸= 0 but instead satisfies

∞∑
n=1

αi(n)
∣∣IE[εi(n) | Fn]

∣∣ < ∞ (1)

almost surely. It is enough to prove an improved version of Lemma 4.2.5 where the condition

IE[ε(t) | Ft] = 0 is replaced with

∞∑
n=1

α(t)
∣∣IE[ε(t) | Ft]

∣∣ < ∞. (2)

Apply the Robbins-Siegmund theorem to W 2 and use that W ≤ 1 +W 2.

Solution:

IE
[
W (t+ 1)2

∣∣Ft

]
= IE

[
(1− α(t))2W 2(t) + α2(t)ε2(t) + 2α(t)(1− α(t))W (t)ε(t)

∣∣Ft

]
≤ (1− 2α(t) + α2(t))W 2(t) + α2(t)C + 2α(t)(1− α(t))W (t)IE

[
ε(t)

∣∣Ft

]
≤ (1− 2α(t) + α2(t))W 2(t) + α2(t)C + 2α(t)(1− α(t))(1 +W 2(t))

∣∣IE[ε(t) ∣∣Ft

]∣∣
≤ (1− 2α(t) + α2(t) + 2α(t)

∣∣IE[ε(t) ∣∣Ft

]∣∣− 2α(t)2
∣∣IE[ε(t) ∣∣Ft

]∣∣︸ ︷︷ ︸
≥0

)W 2(t)

+ α2(t)C + 2α(t)
∣∣IE[ε(t) ∣∣Ft

]∣∣− 2α(t)2
∣∣IE[ε(t) ∣∣Ft

]∣∣︸ ︷︷ ︸
≥0

≤ (1− at + bt)W
2(t) + ct,

with at = −2α(t), bt = α2(t) + 2α(t)
∣∣IE[ε(t) ∣∣Ft

]∣∣, and ct = α2(t)C + 2α(t)
∣∣IE[ε(t) ∣∣Ft

]∣∣. Now
the claim follows from Robbins-Siegmund.

2. n-step TD

a) Write pseudocode for n-step TD algorithms for evaluation of V π and Qπ in the non-

terminating case and prove the convergence by checking that using the n-step Bellman

expectation equations

T π
1 V (s) = IEπ

s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)
]
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and

T π
2 Q(s, a) = IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)
]

and the corresonding error terms fulfill the conditions of Theorem 4.2.9. Note that the

algorithm only starts to update after the MDP ran for n steps. Can you also write down a

version in the terminating case?

Solution: The algorithms in the non terminating case are 1 and 2. The Algorithm in the

Algorithm 1: n-step TD for evaluation of V π

Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize V ≡ 0

Initialise s arbitrarily

while not converged do
Set s∗ = s

Initialise R = 0

for i = 0, . . . n− 1 do
a ∼ π(·; s)
Sample reward R(s, ai)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
s = s′

end

Determine stepsize α

Update V (s∗) = V (s∗) + α(R+ γnV (s)− V (s∗))

end

terminating case would be as stated in algorithm 3. We added a break in the for loop as we

cannot continue in a terminating state. As we only which to update after n steps, we will

not update V after the break. So it can happen that we never update the value function,

if we never run n steps. Next we come to the prove of convergence. Therefore we have to

check that the operators T1 and T2 are contractions and that the error terms

εs(n) := R(s,A0) +
n−1∑
t=1

γtR(St, At) + γnV (Sn)− IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)
]

εs,a(n) := R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)− IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)
]

fulfill the conditions of Theorem 4.2.9. The condition on the error terms is as always given
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Algorithm 2: n-step TD for evaluation of Qπ

Data: Policy π ∈ ΠS

Result: Approximation Q ≈ Qπ

Initialize Q ≡ 0

Initialise s, a arbitrarily

while not converged do
Set s∗ = s and a∗ = a

Initialise R = 0

for i = 0, . . . n− 1 do
Sample reward R(s, a)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
Sample a′ ∼ π(·|s′)
s = s′, a = a∗

end

Determine stepsize α

Update Q(s∗, a∗) = Q(s∗, a∗) + α(R+ γnQ(s, a)−Q(s∗, a∗))

end

by definition and bounded rewards. For the contractions we see that

∥T1(V1)− T1(V2)∥∞

= max
s∈S

|T1(V1)(s)− T1(V2)(s)|

= max
s∈S

|IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV1(Sn)
]

− IEπ
s

[
R(s,A0) +

n−1∑
t=1

γtR(St, At) + γnV2(Sn)
]
|

≤ max
s∈S

IEπ
s

[
γn|V1(Sn)− V2(Sn)|

]
≤ γn∥V1 − V2∥∞
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Algorithm 3: n-step TD for evaluation of V π for terminating MDPs

Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize V ≡ 0

while not converged do
Initialise s arbitrarily

while s not terminal do
Set s∗ = s

Initialise R = 0

for i = 0, . . . n− 1 do

if s terminal then
Break and beginn with a new while-loop

end

a ∼ π(·; s)
Sample reward R(s, ai)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
s = s′

end

Determine stepsize α

Update V (s∗) = V (s∗) + α(R+ γnV (s)− V (s∗))

end

end

and similar for T2

∥T2(Q1)− T2(Q2)∥∞

= max
s∈S,a∈As

|T2(Q1)(s, a)− T2(Q2)(s, a)|

= max
s∈S,a∈As

|IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ1(Sn, An)
]

− IEπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ2(Sn, An)
]
|

≤ max
s∈S,a∈As

IEπa

s

[
γn|Q1(Sn, An)−Q2(Sn, An)|

]
≤ γn∥Q1 −Q2∥∞.
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b) Write pseudocode for an n-step SARSA control algorithm in the non-terminating case. Try

to prove convergence in the same way we did for 1-step SARSA in Theorem 4.3.6.

Solution:

Convergence of n-step SARSA in the non-terminating case. Assume that Q0 has bounded

Algorithm 4: n-step SARSA

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize Q, e.g. Q ≡ 0

Initialise s, a arbitrarily, e.g. uniform.

while not converged do
Set s∗ = s and a∗ = a

Initialise R = 0

Chose new policy π from Q (e.g. ϵ-greedy)

for i = 0, . . . n− 1 do
Sample reward R(s, a)

Set R = R+ γiR(s, a)

Sample s′ ∼ p(· ; s, a)
Sample a′ ∼ π(·|s′)
s = s′, a = a′

end

Determine stepsize α

Update Q(s∗, a∗) = Q(s∗, a∗) + α(R+ γnQ(s, a)−Q(s∗, a∗))

end

entries and and the step-sizes satisfy the Robbins-Monro conditions. If furthermore the

probabilities pn(s, a) the the policy πn+1 is greedy satisfies are such that

∞∑
n=1

αn(s, a)pn(s, a) < ∞ a.s.

for all (s, a). Then n-step SARSA algorithm converges to Q∗ almost surely.

Proof: We denote by (S̃k, Ãk)
∞
k=0 the sequence of state-action pairs obtained from the al-

gorithm. We denote with I = {0, n, 2n, 3n, . . . } the set of indices where the Q-function is

updated, for i ∈ I we have the update

Qi+n(S̃i, Ãi) = Qi(S̃i, Ãi) + αi(S̃i, Ãi)(T
∗
nQi(S̃i, Ãi)−Qi(S̃i, Ãi) + ϵi(S̃i, Ãi)),

where

T ∗
nQ(s, a) = IEπa (π greedy Q∗)

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q(Sn, â)
]

and

ϵi(S̃i, Ãi) =
n−1∑
k=0

γkR(S̃i+k, Ãi+k) + γnQi(S̃i+n, Ãi+n)− T ∗
nQi(s, a).

For convergence we have to prove that:
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(i) the operator T ∗
n is a contraction,

(ii) Q∗ is a fixpoint of T ∗
n ,

(iii) The error term fulfills the assumptions of the generalised stochastic approximation theo-

rem from Exercise 1 above.

For (i)we have similar to T π
2 of part a), that

∥T ∗
n(Q1)− T ∗

n(Q2)∥∞

= max
s∈S,a∈As

|T ∗
n(Q1)(s, a)− T ∗

n(Q2)(s, a)|

= max
s∈S,a∈As

|IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q1(Sn, â)
]

− IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q2(Sn, â)
]
|

= γn max
s∈S,a∈As

|IEπa (π greedy Q∗)
s

[
max
â∈A

Q1(Sn, â)−max
â∈A

Q2(Sn, â)
]
|

≤ γn max
s∈S,a∈As

IEπa (π greedy Q∗)
s

[
max
â∈A

|Q1(Sn, â)−Q2(Sn, â)|
]

≤ γn∥Q1 −Q2∥∞.

We show (ii) by induction over n. We have that for n = 1 that T ∗
1 is the normal Bellman

opator, i.e. Q∗ = T ∗
1Q

∗. Assume Q∗ = T ∗
nQ

∗, then for n+ 1 we conclude

Q∗(s, a) = IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q∗(Sn, â)
]

= IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γn
∑
a∈A

π∗(a;Sn)Q
∗(Sn, a)

]

= IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ∗(Sn, An)
]

= IEπa (π greedy Q∗)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γn
(
R(Sn, An)

+ γ
∑
s′∈S

p(s′;Sn, An)max
â∈A

Q∗(s′, â)
)]

= IEπa (π greedy Q∗)
s

[
R(s, a) +

n∑
t=1

γtR(St, At) + γn+1
∑
s′∈S

p(s′;Sn, An)max
â∈A

Q∗(s′, â)
]

= IEπa (π greedy Q∗)
s

[
R(s, a) +

n∑
t=1

γtR(St, At) + γn+1max
â∈A

Q∗(Sn+1, â)
]

= T ∗
n+1Q

∗(s, a).

For the last claim we first note, that ϵ(s, a) = 0 if (s, a) ̸= (S̃i, Ãi), i ∈ I. We enumerate

the elements in I by the index j, i.e j = i/n for i ∈ I and we have that the next element in

I is j + 1 = i
n + 1 = i+n

n . Further we denote by F̃k the σ-algebra generated by the process
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(S̃k, Ãk). Then the errors ϵi are Fj+1 = F̃i+2n−1 mesurable for every i ∈ I. We define for

ever j ≥ 0 the filtration Fj = F̃j(n+1)−1. Then ϵj·n is Fj+1 measurable and we follow

IE[ϵj·n(S̃j·n, Ãj·n)|Fj ]

= IE[ϵi(S̃i, Ãi)|Fi+n−1]

= IE[1{πi+n(·;S̃i+n) is greedy}

( n−1∑
k=0

γkR(S̃i+k, Ãi+k) + γnQi(S̃i+n, Ãi+n)− T ∗
nQi(s, a)

)
|Fi+n−1]

+ IE[1{πi+n(·;S̃i+n) is non-greedy}

( n−1∑
k=0

γkR(S̃i+k, Ãi+k) + γnQi(S̃i+n, Ãi+n)− T ∗
nQi(s, a)

)
|Fi+n−1]

Do to the choice

T ∗
nQ(s, a) = IEπa (π greedy Q∗)

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q(Sn, â)
]

we do not get that the error is 0 for the greedy policy choice. We would need

T ∗
nQ(s, a) = IEπa (π greedy Q)

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q(Sn, â)
]

as bellman operator. Unfortunetly then we can no longer show that T ∗
n is a contraction:

∥T ∗
n(Q1)− T ∗

n(Q2)∥∞

= max
s∈S,a∈As

|T ∗
n(Q1)(s, a)− T ∗

n(Q2)(s, a)|

= max
s∈S,a∈As

|IEπa (π greedy Q1)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q1(Sn, â)
]

− IEπa (π greedy Q1)
s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnmax
â∈A

Q2(Sn, â)
]
|,

cannot be written in one expectation due to different measures.
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